Пусть, для простоты восприятия, трапеция будет прямоугольной, как это показано на рисунке, хотя на конечный ответ это не повлияет. Обозначим высоту трапеции ВЕ=Н, а высоту треугольника ВСМ ВР=h. Площадь трапеции: S=Н·(АД+ВС)/2=Н·(2+4)/2=3Н. Площадь тр-ка ВСМ: S(ВСМ)=ВС·ВР/2=2h/2=h. S(ВСМ):S(АМСД)=1:3=1x:3x, S(ВСМ)+S(АМСД)=1x+3x=4x=S ⇒ S(ВСМ)=S/4. h=3H/4 ⇒ h:H=3:4. Треугольники АВЕ и МВР подобны по трём углам, значит ВР/ВЕ=МР/АЕ, МР=ВР·АЕ/ВЕ=h·AE/H=3АЕ/4. АЕ=АД-ЕД=АД-ВС=4-2=2. МР=3·2/4=1.5. МТ=МР+РТ=МР+ВС=1.5+2=3.5 - это ответ.
АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3, S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC
S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)
S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,
S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10,
S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20,
S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,
S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1
Обозначим высоту трапеции ВЕ=Н, а высоту треугольника ВСМ ВР=h.
Площадь трапеции: S=Н·(АД+ВС)/2=Н·(2+4)/2=3Н.
Площадь тр-ка ВСМ: S(ВСМ)=ВС·ВР/2=2h/2=h.
S(ВСМ):S(АМСД)=1:3=1x:3x, S(ВСМ)+S(АМСД)=1x+3x=4x=S ⇒ S(ВСМ)=S/4.
h=3H/4 ⇒ h:H=3:4.
Треугольники АВЕ и МВР подобны по трём углам, значит ВР/ВЕ=МР/АЕ,
МР=ВР·АЕ/ВЕ=h·AE/H=3АЕ/4.
АЕ=АД-ЕД=АД-ВС=4-2=2.
МР=3·2/4=1.5.
МТ=МР+РТ=МР+ВС=1.5+2=3.5 - это ответ.