3) сторона квадрата равна 6см в равнобедренном ему треугольнике сторона в 2 раза меньше проведённой к ней высоте. Найдите высоту треугольника 4) найдите площадь треугольника со сторонами 8см, 10см,12см. С решением
Рассмотрим треугольник АВС. Он равнобедренный по условию, так как боковые стороны у него равны. Значит, углы при основании тоже равны - по свойству равнобедренного треугольника.
Так как по условию треугольник АВС ещё и прямоугольный, то сумма его острых углов даёт 90° - по свойству прямоугольного треугольника.
Найдем углы при основании:
BAC = ACB = 90° : 2 = 45°.
Далее рассмотрим углы АСВ и ЕСD - они вертикальные, значит АСВ = ЕСD = 45°.
Так как треугольник СЕD по условию тоже равнобедренный (боковые стороны у него равны по условию), то углы при основании равны. Отсюда находим угол СЕD, он же угол х:
Висоти паралелограма дорівнюють 5 см і 6 см, а сума двох його суміжних сторін - 22 см. Знайдіть площу паралелограма.
Высоты параллелограмма равны 5 см и 6 см, а сумма двух его смежных сторон - 22 см. Найдите площадь параллелограмма.
Пусть длина одной из неравных сторон параллелограмма x см ;
длина другой стороны будет (22-x) см .
Можем написать уравнение x*5 =(22-x)6 || =S ||
5x =22*6 - 6x ;
5x +6x =22*6 ;
11x =22*6 ;
x = 22*6 /11= 2*6 =12 (см). [ так и должно быть x > 22/2 =11 ; 12 > 11 ]
S =x*5 = 12*5 = 60 (см²)
ответ: 60 см² .
! 5a = 6b [ очевидно a > b ] a /b = 6/5
ah₁ =bh₂ ; a/b = =h₂/ h₁ обратная пропорциональность
Рассмотрим треугольник АВС. Он равнобедренный по условию, так как боковые стороны у него равны. Значит, углы при основании тоже равны - по свойству равнобедренного треугольника.
Так как по условию треугольник АВС ещё и прямоугольный, то сумма его острых углов даёт 90° - по свойству прямоугольного треугольника.
Найдем углы при основании:
BAC = ACB = 90° : 2 = 45°.
Далее рассмотрим углы АСВ и ЕСD - они вертикальные, значит АСВ = ЕСD = 45°.
Так как треугольник СЕD по условию тоже равнобедренный (боковые стороны у него равны по условию), то углы при основании равны. Отсюда находим угол СЕD, он же угол х:
(180° - угол ЕСD) : 2
(180° - 45°) : 2 = 67,5° - угол х.