S трапеции где а и в - основания трапеции h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2 Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны) Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2 Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.
Задача 1.
Найдем ∠А = 90°-60° = 30°.
Катет ВС находится напротив угла 30°, а значит, что он равен половине гипотенузы ВА, то есть 10:2=5.
ответ: ВС= 5.
Задача 2.
Найдем ∠А = 90°-45° = 45°.
Значит, ΔАСВ - равнобедренный, АС=СВ.
Высота равнобедренного треугольника, проведенная к основанию, является и биссектрисой угла.
∠САВ = ∠ДСВ = 90:2 = 45°.
Тогда ΔСДВ - равнобедренный.
СД= ДВ как боковые стороны.
АВ = АД+ДВ = 8+8 = 16
ответ: 16.
Задача 3.
∠ЕВС = 90-60=30°
катет ЕС равен половине гипотенузы ЕВ, тогда ЕВ = 7+7=14
∠АЕВ = 180-60=120°
∠АВЕ = 180-120-30 = 30° (∠АВЕ).
Тогда ΔАВЕ - равнобедренный,
основания АЕ=ЕВ = 14
ответ: АЕ = 14
Задача 4.
Так как АВ=АД = 7 (по условию), то ΔАВД - равнобедренный.
∠В=∠Д.
В ΔАСД катет СД = 3,5, то есть половине гипотенузы АД (которая равна 7). Из этого следует, что напротив стороны СД находится угол 30° (∠САД).
Соответственно, что ∠СДА = 60° (90°-30°=60°).
У равнобедренного треугольника углы при основании равны, значит
∠В = ∠Д = 60°.
где а и в - основания трапеции
h-высота
Из вершины угла меньшего основания опустим на большее основание перпендикуляр. Получатся 2 отрезка. Меньший из них равен : (большее основание - меньшее)\2
Так мы найдем меньший отрезок
Периметр равен: большее основание+меньшее+ 2*боковые стороны (т.к.они равны)
Выразим из этой полученной формулы боковую сторону :(Периметр -(сумма оснований))\2
Так мы найдем боковую сторону
У нас есть меньший отрезок и боковая сторона. По формуле Пифагора выразим высоту
Затем подставим числа в формулу площади. Все. Решено.