Теорема Чевы. Дан треугольник и точки на сторонах BC, AC и AB соответственно. Отрезки пересекаются в одной точке тогда и только тогда, когда
Лемма. Если числа таковы, что
то
,
лишь бы знаменатель в ноль не обращался.
Доказательство леммы. Оно элементарно. Кстати, те, кто в первый раз видит эту лемму, очень часто реагируют так: "Вы что же, числители и знаменатели складываете?! У нас в школе за это двойки ставят!" Впрочем, присмотревшись к утверждению и убедившись, что мы не собираемся таким образом дроби складывать, обычно все успокаиваются, особенно разобравшись в доказательстве.
Обозначим общее значение дробей и буквой Тогда
что и требовалось доказать.
Чтобы эта лемма стала совсем очевидной, хочется привести еще и то, что я иногда называю ПОКАЗАТЕЛЬСТВОМ, то есть рассуждение, не претендующее на роль строгого рассуждения, но приблизиться к "кухне математика". Итак, представьте две карты некой местности в разных масштабах, a - это расстояние между пунктами D и E, b - между E и F на одной карте, b и d - аналогичные расстояния на другой карте. В этом случае - это отношение масштабов карт. Ясно, что если мы сложим a и c, то получим длину маршрута от первого пункта через второй к третьему на первой карте, а сложив b и d - длину маршрута на второй карте. Понятно, что их отношение снова равно отношению масштабов карт.
Доказательство теоремы.
1. Пусть указанные отрезки пересекаются в точке , тогда треугольник оказывается разбит на 6 треугольников, занумерованных так, как указано на чертеже. Рассмотрим первую дробь
Поскольку числитель и знаменатель этой дроби являются основаниями треугольников и с общей высотой, дробь не изменится, если заменить числитель и знаменатель на площади указанных треугольников. А заметив, что на тех же основаниях стоят треугольники и , можно заменить числитель и знаменатель и на их площади.
Поэтому
Воспользуемся теперь леммой: дроби не изменятся, если взять разность числителей и разность знаменателей:
Проведя аналогичное рассуждение для двух других дробей, получаем:
что и доказывает теорему Чевы в одну сторону.
2. Пусть не пересекаются в одной точке.Проведем через точку пересечения и отрезок (точка расположена на стороне ). По доказанному,
Если бы было выполнено
,
то
что невозможно при
(скажем, если точки на стороне расположены в порядке то числитель первой дроби больше числителя второй дроби, а знаменатель первой дроби меньше знаменателя второй, значит, первая дробь больше второй).
На этом доказательство завершается.
Замечание. Нетрудно получить тригонометрическую форму теоремы Чевы. Воспользуемся для этого теоремой синусов:
Аналогично получаем
Отсюда получается новая формулировка теоремы Чевы.
Отрезки пересекаются в одной точке тогда и только тогда, когда
Примеры.
1) Медианы пересекаются в одной точке, поскольку все три дроби в основной формулировке теоремы Чевы равны 1.
2) Биссектрисы пересекаются в одной точке. Здесь удобнее воспользоваться теоремой Чевы в тригонометрической форме.
3) Высоты в остроугольном треугольнике пересекаются в одной точке. Опять легче воспользоваться тригонометрической формой.
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
на сторонах BC, AC и AB соответственно. Отрезки
пересекаются в одной точке тогда и только тогда, когда
Лемма. Если числа таковы, что
то
,
лишь бы знаменатель в ноль не обращался.
Доказательство леммы. Оно элементарно. Кстати, те, кто в первый раз видит эту лемму, очень часто реагируют так: "Вы что же, числители и знаменатели складываете?! У нас в школе за это двойки ставят!" Впрочем, присмотревшись к утверждению и убедившись, что мы не собираемся таким образом дроби складывать, обычно все успокаиваются, особенно разобравшись в доказательстве.
Обозначим общее значение дробей и
буквой
Тогда
что и требовалось доказать.
Чтобы эта лемма стала совсем очевидной, хочется привести еще и то, что я иногда называю ПОКАЗАТЕЛЬСТВОМ, то есть рассуждение, не претендующее на роль строгого рассуждения, но приблизиться к "кухне математика". Итак, представьте две карты некой местности в разных масштабах, a - это расстояние между пунктами D и E, b - между E и F на одной карте, b и d - аналогичные расстояния на другой карте. В этом случае - это отношение масштабов карт. Ясно, что если мы сложим a и c, то получим длину маршрута от первого пункта через второй к третьему на первой карте, а сложив b и d - длину маршрута на второй карте. Понятно, что их отношение снова равно отношению масштабов карт.
Доказательство теоремы.
1. Пусть указанные отрезки пересекаются в точке , тогда треугольник оказывается разбит на 6 треугольников, занумерованных так, как указано на чертеже. Рассмотрим первую дробь
Поскольку числитель и знаменатель этой дроби являются основаниями треугольников и с общей высотой, дробь не изменится, если заменить числитель и знаменатель на площади указанных треугольников. А заметив, что на тех же основаниях стоят треугольники
и , можно заменить числитель и знаменатель и на их площади.
Поэтому
Воспользуемся теперь леммой: дроби не изменятся, если взять разность числителей и разность знаменателей:
Проведя аналогичное рассуждение для двух других дробей, получаем:
что и доказывает теорему Чевы в одну сторону.
2. Пусть не пересекаются в одной точке.Проведем через точку пересечения и
отрезок (точка расположена на стороне ).
По доказанному,
Если бы было выполнено
,
то
что невозможно при
(скажем, если точки на стороне
расположены в порядке
то числитель первой дроби больше числителя второй дроби, а знаменатель первой дроби меньше знаменателя второй, значит, первая дробь больше второй).
На этом доказательство завершается.
Замечание. Нетрудно получить тригонометрическую форму теоремы Чевы.
Воспользуемся для этого теоремой синусов:
Аналогично получаем
Отсюда получается новая формулировка теоремы Чевы.
Отрезки пересекаются в одной точке тогда и только тогда, когда
Примеры.
1) Медианы пересекаются в одной точке, поскольку все три дроби в основной формулировке теоремы Чевы равны 1.
2) Биссектрисы пересекаются в одной точке. Здесь удобнее воспользоваться теоремой Чевы в тригонометрической форме.
3) Высоты в остроугольном треугольнике пересекаются в одной точке. Опять легче воспользоваться тригонометрической формой.
3√3/2 см.
Объяснение:
Если тригонометрические соотношения в прямоугольном треугольнике ещё не изучены, можно воспользоваться этим
1. Центром окружности, описанной около прямоугольного треугольника, является середина гипотенузы, тогда длина гипотенузы с = 2R = 2•3 = 6(см).
2. По условию один из острых углов треугольника равен 60°, тогда второй острый угол равен 90° - 60° = 30°. Напротив него лежит катет, равный половине гипотенузы, а = 6:2= 3 (см).
3. По теореме длина второго катета b = √(36 - 9) = √27 = 3√3(см).
4. S = 1/2ab,
S = 1/2• c • h, тогда
1/2•a•b = 1/2• c • h,
ab = ch,
h = (ab)/c = (3•3√3)/6 = 3√3/2 (см).