3. Установите соответствие между царствами живой природы и их представителями 1 ЦАРСТВО РАСТЕНИЯ А Палочка Коха 2 ЦАРСТВО ЖИВОТНЫЕ Б Улитка виноградная 3 ЦАРСТВО ГРИБЫ В Шампиньон обыкновенный 4 ЦАРСТВО БАКТЕРИИ Г Сосна альпийская 5 ЦАРСТВО ВИРУСЫ Д ВИЧ Е Дрожжи Ж Инфузория - туфелька З Стрептококки И Ковид -19 К Фиалка ночная
1) площадь квадрата равна площади ромба
найдём площадь ромба
пусть у нас ромб АВСД, АВ=6 см
ВД=диагональ
О центр ромба
угол АВО=60
расмотрим треугольник АВО
он прямоугольнвый
АВ гипотенуза
ВО- катет
угол АВО=60 град
ВО=AB*cos60=6*1/2=3 см
площадь треугольника будет 1/2*ВО*AO
AO=AB*sin 60=6*корень(3)/2=3*корень 3
площадь ромба будет равно площади 4 таких треугольников, то мы получим, просто 2*BO*AO=18*корень(3)
а площадь квадрата будет, сторона в квадрате
тогда получим просто, что сорона равна корень 18*корень(3)=3*2^(0.5)*3^(0.25)=3 умножить на квадратный корень с 2 и умножить на корень 4 степени с 3
2)
этот треугольник равнобедренный, так как третий угол равен 180-90-45=45
один екатет основа
другой высота
площадь равна половине произведению высоты на основу
от тут мы знаем что каеты равны
по факту половина квадрата катета
катет равен=гипотенуза* cos45=10*корень (2)/2=5*корень с 2-ух
тогда имеем, что площадь равна 1/2 *(катет)^2=1/2(5^2*2)= 1/2*50=кв. 25 см
єто и есть ответ
Условие задачи НЕ КОРРЕКТНО. По координатам двух противоположных вершин прямоугольника (B и D) определить координаты двух других вершин (А и С) невозможно без дополнительного условия. Дело в том, что вершины прямоугольника лежат на окружности диаметра BD и их бесконечное множество.
Смотри рисунок.
Любой точке на окружности соответствует симметричная ей относительно центра О точка, соединив которые с точками В и D получим прямоугольник, так как углы ВАD и ВСD - прямые (вписанные, опирающиеся на дивметр).
Найдем координаты центра окружности, описанной около данного прямоугольника и ее радиус:
О((-4+2)/2; (2-3)/2) или О(-1;-0,5).
R=|ОВ| = √((-4-(-1))²+(2-(-0,5)²) =√15,25. Тогда уравнение окружности (x+1)² + (y+0,5)² =15,25.
ЛЮБАЯ точка на этой окружности - вершина А, симметричная ей относительно центра О точка - вершина С.
Найдем координаты вершин А и С ПРИ УСЛОВИИ, что стороны прямоугольника параллельны осям ординат.
В уравнение окружности подставим координату Х=-4 и найдем для нее соответствующую координату Y: (-3)² + (y+0,5)² =15,25. => Y² + Y -6 = 0. => Y1=3, Y2=-2. Точно так же для точек с координатой Х=2. Y1=2 и Y2=-3. Тогда имеем: А(-4;-3) и С(2;2).