3. ( ] Установите соответствие: Радиус окружности, вписанной в правильный треугольник, равен уз см. Задание ответ 1. Найдите радиус окружности, описанной около этого же A. 6: треугольника. В. 18: 2. Найдите периметр данного правильного треугольника. С. 6: 3. Найдите площадь данного правильного треугольника. D. 66, 4. Найдите сторону квадрата, вписанного в данную окружность. E. 2; F. 23, G. 63; 1 ; 2 :3 4 Н. 93.
Решение: возьмем произвольный ромб и обозначим его как ABCD, проведем в нем диагонали AC и BD. Они пересекутся в точке О. Известно также, что диагонали ромба перпендикулярны и делят его углы пополам. Тогда угол ВСО = углу ОСD = 104/2=51*. Рассмотрим один из получившихся треугольников - ВОС. В нем угол ВОС = 90* (так как диагонали ромба перпендикулярны). Угол ВСО = 51*, угол ВОС = 90*, значит угол ОВС = 180 - (51*+90*) = 39*. Но треуг. ВСО = треуг. АВО и значит все стороны и углы одного соответственно равны сторонам и углам другого. То есть в треугольнике АВО угол АВО = 39*, а угол ВОА = 90*.
Решение: возьмем произвольный ромб и обозначим его как ABCD, проведем в нем диагонали AC и BD. Они пересекутся в точке О. Известно также, что диагонали ромба перпендикулярны и делят его углы пополам. Тогда угол ВСО = углу ОСD = 104/2=51*. Рассмотрим один из получившихся треугольников - ВОС. В нем угол ВОС = 90* (так как диагонали ромба перпендикулярны). Угол ВСО = 51*, угол ВОС = 90*, значит угол ОВС = 180 - (51*+90*) = 39*. Но треуг. ВСО = треуг. АВО и значит все стороны и углы одного соответственно равны сторонам и углам другого. То есть в треугольнике АВО угол АВО = 39*, а угол ВОА = 90*.
3) Дано:
АВCD - ромб,
AC и BD - диагонали ромба,
О - точка пересечения диагоналей,
угол BCD = 104*
Найти углы ABO.
Решение: возьмем произвольный ромб и обозначим его как ABCD, проведем в нем диагонали AC и BD. Они пересекутся в точке О. Известно также, что диагонали ромба перпендикулярны и делят его углы пополам. Тогда угол ВСО = углу ОСD = 104/2=51*. Рассмотрим один из получившихся треугольников - ВОС. В нем угол ВОС = 90* (так как диагонали ромба перпендикулярны). Угол ВСО = 51*, угол ВОС = 90*, значит угол ОВС = 180 - (51*+90*) = 39*. Но треуг. ВСО = треуг. АВО и значит все стороны и углы одного соответственно равны сторонам и углам другого. То есть в треугольнике АВО угол АВО = 39*, а угол ВОА = 90*.
3) Дано:
АВCD - ромб,
AC и BD - диагонали ромба,
О - точка пересечения диагоналей,
угол BCD = 104*
Найти углы ABO.
Решение: возьмем произвольный ромб и обозначим его как ABCD, проведем в нем диагонали AC и BD. Они пересекутся в точке О. Известно также, что диагонали ромба перпендикулярны и делят его углы пополам. Тогда угол ВСО = углу ОСD = 104/2=51*. Рассмотрим один из получившихся треугольников - ВОС. В нем угол ВОС = 90* (так как диагонали ромба перпендикулярны). Угол ВСО = 51*, угол ВОС = 90*, значит угол ОВС = 180 - (51*+90*) = 39*. Но треуг. ВСО = треуг. АВО и значит все стороны и углы одного соответственно равны сторонам и углам другого. То есть в треугольнике АВО угол АВО = 39*, а угол ВОА = 90*.