3. ( ) Установите соответствие:
Радиус окружности, вписанной в правильный треугольник, равен
Задание
ответ
1. Найдите радиус окружности, описанной около этого же
треугольника.
2. Найдите периметр данного правильного треугольника.
3. Найдите площадь данного правильного треугольника.
4 Найдите сторону квадрата, вписанного в данную окружность.
А.6;
В.18;
С.Корень из 6
D.6 Корень из 6
E.2;
F.2 Корень из 3
G.6 Корень из 3
H.9 Корень из 3
Диагонали ромба взаимно перпендикулярны, в точке пересечения делятся пополам и разбивают ромб на 4 равных прямоугольных треугольника.
По теореме Пифагора сторона ромба
а²=(d₁/2)²+(d₂/2)²=(2x)²+(3x)²=13x²
а=х√13
Из формул для вычисления площади треугольника АОВ
S(Δ AOB)=AO·OB/2
и
S(Δ AOB)=AB·OE/2
находим OE
AO·OB=AB·OE
OE=2x·3x/х√13=6х/√13.
Из треугольника АОЕ по теореме Пифагора
AE²=AO²-EO²=(2x)²-(6x/√13)²=4x²-(36x²/13)=(52x²-36x²)/13=16x²/13
AE=4x/√13
S(Δ AOE)=AE·OE/2
(4x/√13)·(6x/√13)=54
24x²=54·13
x²=9·13/4
S(ромба)=a·h=(x√13)·2OE=(x√13)·2·(6x/√13)=12x²=12·(9·13/4)=27·13=
=351 кв. ед
Теперь, если прямые не пересекаются, то они параллельны. Но нам известно, что прямая пересекает одну из двух параллельных прямых, соответственно, она не может быть параллельной (не пересекаться) со второй. Это следствие вытекает из аксиомы. Если бы она не пересекала вторую, значит и к первой была бы параллельна.
Примечание. Все вышесказанное справедливо для прямых относящихся (принадлежащих) одной плоскости.