Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой.
Плоскость треугольника АВС проходит через прямую АВ, параллельную данной плоскости, и пересекает эту плоскость, следовательно, линия пересечения этих плоскостей В1А1║АВ. Поэтому в ∆АВС и ∆А1В1С ∠СВ1А=∠СВА как соответственные при пересечении параллельных прямых АВ и А1В1 секущей ВС, ∠С - общий ⇒ эти треугольники подобны. Из подобия следует отношение: А1В1:В1С=АВ:ВС А1В1:10=4:5 5А1В1=40 ⇒ А1В1=8 см
1)Диагонали под прямым углом пересекаются только в ромбе или в квадратеи так как ромб является частным случаем параллелограмма ,то он не может являться нашей искомой фигурой. А квадрат является разновидностью трапеции, у которой диагонали пересекаются под прямым углом, значит наша фигура- квадрат со стороной 8 см , отсюда площадь квадрата равна 8*8=64 см^ 2)Начертите прямоугольную трапецию. Из т.С опустите высоту на основание АД. Площадь этой трапеции состоит из площадей составляющих ее фигур: прямоугольника и прямоугольного треугольника. Площадь прямоугольника равна произведению длины на ширину. А площадь треугольника - половине произведения длин катетов. Один из катетов является высотой трапеции, а второй равен разности длин оснований трапеции. Надеюсь, дальше посчитать не проблема? :) пойдёт?:)
Плоскость треугольника АВС проходит через прямую АВ, параллельную данной плоскости, и пересекает эту плоскость, следовательно, линия пересечения этих плоскостей В1А1║АВ.
Поэтому в ∆АВС и ∆А1В1С ∠СВ1А=∠СВА как соответственные при пересечении параллельных прямых АВ и А1В1 секущей ВС, ∠С - общий ⇒ эти треугольники подобны.
Из подобия следует отношение:
А1В1:В1С=АВ:ВС
А1В1:10=4:5
5А1В1=40 ⇒
А1В1=8 см
2)Начертите прямоугольную трапецию. Из т.С опустите высоту на основание АД. Площадь этой трапеции состоит из площадей составляющих ее фигур: прямоугольника и прямоугольного треугольника. Площадь прямоугольника равна произведению длины на ширину. А площадь треугольника - половине произведения длин катетов. Один из катетов является высотой трапеции, а второй равен разности длин оснований трапеции. Надеюсь, дальше посчитать не проблема? :)
пойдёт?:)