3 В параллелограмме ABCD угол A равен 60 градусов Высота BE делит сторону AD на две равные части. Найдите длину диагонали BD, если периметр параллелограмма равен 64 см. [5]
Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию равнобедренного треугольника, совпадают между собой. Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны." Решение: Итак, треугольники АМD и DNC - равны между собой, так как AD=DC (BD- медиана), NC=МA (так как МВ=BN - дано, а АВ=ВС - треугольник АВС равнобедренный) и улы ВАС и ВСА между равными сторонами равны. Из равенства тр-ков вытекает равенство сторон МD и ND. Что и требовалось доказать
M и N – середины боковых сторон трапеции ABCD, тогда отрезок MN – средняя линия трапеции.
Свойства средней линии трапеции:
1) средняя линия трапеции параллельна основаниям;
2) средняя линия трапеции равна половине суммы оснований.
Тогда, по 1 свойству, прямая, проходящая через среднюю линию MN, будет параллельна прямой, проходящей через основание АD.
Признак параллельности прямой и плоскости:
Если прямая, не лежащая в данной плоскости, параллельна какой-нибудь прямой, лежащей в этой плоскости, то она параллельна самой плоскости.
Получается:
MN параллельна АD, АD лежит в плоскости α, следовательно, по признаку параллельности прямой и плоскости, MN || α.
По второму свойству средней линии трапеции:
MN = (ВС + АD)/2
АD = 2·MN – ВС
АD = 2∙6 – 4
АD = 8