ответ:Сделайте рисунок к задаче.
Треугольник сильно вытянутый от АС к В. Точка К на стороне ВС близко к С.
Обратите теперь внимание на то, что
∠ В+∠С=∠АКВ.
Проведем из К параллельно АС прямую КЕ.
∠ ВКЕ равен ∠ С ( по свойству параллельных прямых и секущей).
Отсюда ∠ ВКА минус ∠ С= ∠ В.
Получили при АС ᐃ АКС~ᐃ АВС по двум углам
∠АСК=∠ЕКВ и ∠КАС=∠АВС.
В подобных треугольниках соответственные стороны лежат против равных углов.
ВС:АС=АС:КС
АС²=ВС*КС
АС²=18*2
АС=√36=6
Теперь из из этих же подобных треугольников найдем АВ
АВ:АК=ВС:АС
АВ:5=18:6
6АВ=90
АВ=15
Задача 2 рисунок 1
Дано: ABC - прямоугольный равнобедренный треуг.
AD = 8 см - медиана
Найти: CB = ?
1) ABC - прямоугольный равнобедренный треуг.
угол А = 90 гр. => угол В + угол С = 90 гр.,
угол В = угол С (т.к. АВС равнобедренный) => угол В = угол С = 90/2 = 45 гр.
AD - высота, медиана и биссектриса (по свойству равнобедренного треуг.) => BD = CD
2) Рассмотрим треуг. ABD
угол D = 90 гр.
tg 45 = AD/BD => BD = AD/tg 45
BD = 8 см/1 = 8 см
3) CB = BD + CD = 8 + 8 = 16 см
ОТВЕТ: CB = 16 см
Задача 3 Рисунок 2
Дано: NMK - прямоугольный треуг.
NS = 10 см - медиана
угол M = 30 гр.
Найти: NK = ?
1) угол M + угол K = 90 гр (по свойству прямоугольного треуг.) =>
=> угол K = 90 - 30 = 60 гр
2) NS - медиана => MS = SK
3) NK = 1/2*MK (т.к. угол против 30 гр. равен половине гипотенузы) =>
=> NK = MS = SK
3) Рассмотрим треуг. NSK - равнобедренный треуг. (NK = SK)
угол K = 60 гр => угол S = угол N (т.к. углы при основании равны)
угол S = угол N = (180 - 60)/2 = 60
треуг. NSK - равносторонний => NK = NS = 10 см
ОТВЕТ: NK = 10 см
ответ:Сделайте рисунок к задаче.
Треугольник сильно вытянутый от АС к В. Точка К на стороне ВС близко к С.
Обратите теперь внимание на то, что
∠ В+∠С=∠АКВ.
Проведем из К параллельно АС прямую КЕ.
∠ ВКЕ равен ∠ С ( по свойству параллельных прямых и секущей).
Отсюда ∠ ВКА минус ∠ С= ∠ В.
Получили при АС ᐃ АКС~ᐃ АВС по двум углам
∠АСК=∠ЕКВ и ∠КАС=∠АВС.
В подобных треугольниках соответственные стороны лежат против равных углов.
ВС:АС=АС:КС
АС²=ВС*КС
АС²=18*2
АС=√36=6
Теперь из из этих же подобных треугольников найдем АВ
АВ:АК=ВС:АС
АВ:5=18:6
6АВ=90
АВ=15
Задача 2 рисунок 1
Дано: ABC - прямоугольный равнобедренный треуг.
AD = 8 см - медиана
Найти: CB = ?
1) ABC - прямоугольный равнобедренный треуг.
угол А = 90 гр. => угол В + угол С = 90 гр.,
угол В = угол С (т.к. АВС равнобедренный) => угол В = угол С = 90/2 = 45 гр.
AD - высота, медиана и биссектриса (по свойству равнобедренного треуг.) => BD = CD
2) Рассмотрим треуг. ABD
угол D = 90 гр.
tg 45 = AD/BD => BD = AD/tg 45
BD = 8 см/1 = 8 см
3) CB = BD + CD = 8 + 8 = 16 см
ОТВЕТ: CB = 16 см
Задача 3 Рисунок 2
Дано: NMK - прямоугольный треуг.
NS = 10 см - медиана
угол M = 30 гр.
Найти: NK = ?
1) угол M + угол K = 90 гр (по свойству прямоугольного треуг.) =>
=> угол K = 90 - 30 = 60 гр
2) NS - медиана => MS = SK
3) NK = 1/2*MK (т.к. угол против 30 гр. равен половине гипотенузы) =>
=> NK = MS = SK
3) Рассмотрим треуг. NSK - равнобедренный треуг. (NK = SK)
угол K = 60 гр => угол S = угол N (т.к. углы при основании равны)
угол S = угол N = (180 - 60)/2 = 60
треуг. NSK - равносторонний => NK = NS = 10 см
ОТВЕТ: NK = 10 см