№3. В равнобедренной трапеции АМКР Основания МК=6см и АД =16 см, сторона АМ=13 см. Найдите площадь трапеции. №4. В треугольнике АВС АВ= ВС=25 см, АС =40 см. Найдите площадь треугольника.
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301
обозначим меньший треугольник АВС, больший треугольник А1В1С1,
по условию эти треугольники подобны...
Р(АВС) : Р(А1В1С1) = 4:5 (это и есть коэффициент подобия)
известно:
периметры подобных фигур относятся как коэффициент подобия,
площади относятся как квадрат коэффициента подобия
(объемы относятся как куб коэфф.подобия)
S(АВС) : S(А1В1С1) = 16:25
или 25*S(АВС) = 16*S(А1В1С1)
S(А1В1С1) = (25/16)* S(АВС) АВС--меньший треугольник
S(А1В1С1) - S(АВС) = 27 (см²) (по условию)
(25/16)*S(АВС) - S(АВС) = 27 (см²)
S(АВС)*((25/16) - 1) = 27 (см²)
S(АВС)*(9/16) = 27
S(АВС) = 27*16/9 = 3*16 = 48 (см²)