№3. В равнобедренной трапеции АМКР Основания МК=6см и АД =16 см, сторона АМ=13 см. Найдите площадь трапеции. №4. В треугольнике АВС АВ= ВС=25 см, АС =40 см. Найдите площадь треугольника.
Высота равнобедренной трапеции отсекает на большом основании отрезок - (16-6)/2= 5 см. Этот отрезок, боковая сторона и высота образуют прямоугольный треугольник с гипотенузой 13 см, катетом 5 см и другим катетом - высота. По т. Пифагора высота -
√(13²-5²)=12 см. Площадь -
S= 12*(6+16)/2=132 см².
№4
Треугольник АВС равнобедренный (АВ=ВС=25 см) с основанием АС=40 см. Высота, опущенная на основание является медианой. Треугольник, образованной высотой, боковой стороной и половиной основания - прямоугольный. Гипотенуза - боковая сторона 25 см, катет - половина основания - 40/2=20 см, второй катет - высота. По т. Пифагора второй катет -
Объяснение:
№3
Высота равнобедренной трапеции отсекает на большом основании отрезок - (16-6)/2= 5 см. Этот отрезок, боковая сторона и высота образуют прямоугольный треугольник с гипотенузой 13 см, катетом 5 см и другим катетом - высота. По т. Пифагора высота -
√(13²-5²)=12 см. Площадь -
S= 12*(6+16)/2=132 см².
№4
Треугольник АВС равнобедренный (АВ=ВС=25 см) с основанием АС=40 см. Высота, опущенная на основание является медианой. Треугольник, образованной высотой, боковой стороной и половиной основания - прямоугольный. Гипотенуза - боковая сторона 25 см, катет - половина основания - 40/2=20 см, второй катет - высота. По т. Пифагора второй катет -
√(25²-20²)=15 см;
площадь - S=15*40/2=300 см².