3. В треугольнике ABC проведена биссектриса BD, угол А=700, угол С=400. б) Сравните отрезки AD и DC * BD меньше AD; AD меньше DC BD больше AD; AD больше DC BD больше AD; AD меньше DC
Смотри, у нас есть треугольник, так как его основание делется как 1 к 5, то 1 это x, а 5 это 5x, далее нам нужно подставить все известное в форумлу площади треугольника, S=1/2*a*h, 36=1/2*6x*h (6x потому что 5x+x=6x), как видно нам надо найти высоту,H=12/x; теперь нам нужно найти площадь KBC, для этого подставим все в формулу площади, только теперь не 6x а 5x так как основание поменялось. S=1/2*5x*(12/x); Итого 30 cm^2.
В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
Смотри, у нас есть треугольник, так как его основание делется как 1 к 5, то 1 это x, а 5 это 5x, далее нам нужно подставить все известное в форумлу площади треугольника, S=1/2*a*h, 36=1/2*6x*h (6x потому что 5x+x=6x), как видно нам надо найти высоту,H=12/x; теперь нам нужно найти площадь KBC, для этого подставим все в формулу площади, только теперь не 6x а 5x так как основание поменялось. S=1/2*5x*(12/x); Итого 30 cm^2.
АК:КС=1:5, следовательно КС=5АК АК=х, КС=5х S(ABC)=AC*h/2=(x+5x)*h/2=6x*h/2 S(ABC)=36 (см кв)-по условию 6х*h/2=36 3x*h=36 x*h=12 S(KBC)=KC*h/2=(5x)*h/2=5*(x*h)/2=5*12/2=60/2=30(см кв) ответ: 30 см кв
6 ед.
Объяснение:
В правильной усеченной пирамиде в основаниях лежат правильные многоугольники, стороны которых соответственно равны между собой. Боковые грани такой пирамиды - равные между собой равнобокие трапеции. Радиусы окружностей, вписанных в основания, проведенные в точки касания сторон оснований с соответственной окружностью Н и Н1, перпендикулярны к сторонам оснований по свойству радиусов, проведенных в точки касания.
Проведем перпендикуляр из точки касания Н1М верхнего основания на нижнее основание. Тогда отрезок Н1Н перпендикулярен стороне основания АВ по теореме о трех перпендикулярах, то есть является искомой высотой боковой грани.
В прямоугольном треугольнике НН1М угол ∠НН1М = 30° по сумме острых углов. Следовательно, НН1 = 2·НМ по свойству катета, лежащего против угла 30°.
НМ = ОН - О1Н1 = 8-5 = 3 ед.
Высота боковой грани НН1 = 6 ед.