3. ВМ - перпендикуляр до площини рівнобічної трапеції (BC || AD), у якої AD = 25 см, ВС = 15 см, AB = 13 см. Знайти довжину відрізкa MD, якщо ВМ = 3 см.
1)там есть две пары вертикальных углов,они равны, сумма всех углов 360°,значит сумма двух разных углов равна 180°,но один больше другого на 30,поэтому получается,что d+b=180°
b+30°+b=180°
2b=150°
b=75°
d=105°
2)b+d=180°
b=d+100°
2d=180°-100°
2d=80°
d=40°
b=140°
3)b+d=180°
b=8d
9d=180°
d=20°
b=(20°)*8=160°
4)см пункт 1,есть 2 пары вертикальных углов,они равны между собой
Сделаем рисунок. АВ - общая касательная. IJ- отрезок, соединяющий центры. О - точка пересечения этого отрезка и касательной. IA - радиус большей окружности, JB - радиус меньшей окружности. Вариант решения 1) Как радиусы, проведенные в точку касания, IA и JB перпендикулярны касательной АВ. Прямоугольные треугольники OIA и OJB подобны по двум углам - прямому и вертикальному при О. Все стороны этих треугольников имеют коэффициент подобия k=m:n ⇒ IA:JB=m:n Ясно, что отношение диаметров данных окружностей равно отношению их радиусов, т.е. АС:ВD=m:n.
Вариант решения 2) СА ⊥АВ BD ⊥АВ ⇒ СА и BD- параллельны. Углы С и D равны как накрестлежащие при пересечении параллельных прямых секущей.. Углы при О равны, как вертикальные. Треугольники АСO и DBO подобны по трем углам. OI OJ- медианы этих треугольников. Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия. Следовательно, отношение диаметров данных окружностей ( гипотенуз треугольников) равно отношению их медиан, т.е. АС:ВD=m:n.
1)75,75,105,105
2)40,140
3)20,160
4)80,100,80
5)10,10,170,170
Объяснение:
1)там есть две пары вертикальных углов,они равны, сумма всех углов 360°,значит сумма двух разных углов равна 180°,но один больше другого на 30,поэтому получается,что d+b=180°
b+30°+b=180°
2b=150°
b=75°
d=105°
2)b+d=180°
b=d+100°
2d=180°-100°
2d=80°
d=40°
b=140°
3)b+d=180°
b=8d
9d=180°
d=20°
b=(20°)*8=160°
4)см пункт 1,есть 2 пары вертикальных углов,они равны между собой
то есть 2 угла из 4 : 100°
сумма всех 360°
(360°-100°-100°)/2=80°
то есть углы:80°,100°,80°
5)b=x
d=17x
b+d=180°
17x+x=180°
18x=180°
x=10°
b=10°
d=170°
АВ - общая касательная.
IJ- отрезок, соединяющий центры.
О - точка пересечения этого отрезка и касательной.
IA - радиус большей окружности, JB - радиус меньшей окружности.
Вариант решения 1)
Как радиусы, проведенные в точку касания, IA и JB перпендикулярны касательной АВ.
Прямоугольные треугольники OIA и OJB подобны по двум углам - прямому и вертикальному при О. Все стороны этих треугольников имеют коэффициент подобия
k=m:n ⇒
IA:JB=m:n
Ясно, что отношение диаметров данных окружностей равно отношению их радиусов, т.е. АС:ВD=m:n.
Вариант решения 2)
СА ⊥АВ
BD ⊥АВ ⇒
СА и BD- параллельны.
Углы С и D равны как накрестлежащие при пересечении параллельных прямых секущей.. Углы при О равны, как вертикальные.
Треугольники АСO и DBO подобны по трем углам.
OI OJ- медианы этих треугольников.
Отношение длин соответствующих элементов подобных треугольников (в частности, длин биссектрис, медиан, высот и серединных перпендикуляров) равно коэффициенту подобия.
Следовательно, отношение диаметров данных окружностей ( гипотенуз треугольников) равно отношению их медиан, т.е. АС:ВD=m:n.