3. Яке з наведених тверджень неправильне? А. Якщо одна з двох паралельних прямих перетинає площину, то
друга пряма паралельна цій площині,
Б. Пряму і площину називають паралельними, якщо вони не
перетинаються.
В. Якщо пряма, що не належить площині, паралельна якій-небудь
прямій цієї площини, то вона паралельна й самій площині.
Г. Якщо пряма, що не належить площині, не паралельна жодній
прямій цієї площини, то вона перетинає цю площину.
4. Яке з наведених тверджень неправильне?
Если внешний угол равен 30 градусов, то, учитывая, что сумма всех внешних углов равна 360 градусов, получим: 360 : 30 = 12. Значит этот многоугольник - правильный двенадцатиугольник.Если диаметр окружности 8 см, то радиус равен 4 см.
Если провести радиусы, то двенадцатиугольник разбивается на 12 равных равнобедренных треугольников с боковыми сторонами 4 см и углом при вершине равным 360 :12 = 30 градусов.Площадь одного такого треугольника равна 1/2* 4*4*sin 30 = 4 кв. см
Тогда площадь всего двенадцатиугольника равна 4 * 12 = 48 кв.см
ответ. 48 кв.см
а)
Так как две боковые грани перпендикулярны плоскости основания, то и ребро, по которому они пересекаются, МС, так же перпендикулярно плоскости основания.
Пусть Н - середина гипотенузы АВ.
Тогда СН - медиана и высота равнобедренного треугольника,
СН⊥АВ. СН - проекция МН на плоскость основания, тогда и МН⊥АВ по теореме о трех перпендикулярах.
∠МНС = 45° - линейный угол двугранного угла между боковой гранью МАВ и плоскостью основания.
СН = АВ/2 = 2√2 см, так как медиана прямоугольного треугольника, проведенная к гипотенузе, равна ее половине.
ΔМСН прямоугольный равнобедренный (∠МНС = 45°), значит
МС = СН = 2√2 см
АВ = АС√2 как гипотенуза равнобедренного треугольника,
АС = ВС = АВ/√2 = 4 см
ΔМСА: ∠МСА = 90°, по теореме Пифагора
МА = √(МС² + АС²) = √(8 + 16) = √24 = 2√6 см
ΔМСА = ΔМСВ по двум катетам (АС = ВС по условию, МС - общий), ⇒
МВ = МА = 2√6 см
б) Sбок = Smac + Smab + Smcb
Smab = Smcb = 1/2 · MC ·AC = 1/2 · 2√2 · 4 = 4√2 см²
Smab = 1/2 · AB · MH
MH = MC√2 = 2√2 · √2 = 4 см как гипотенуза равнобедренного треугольника,
Smab = 1/2 · 4√2 · 4 = 8√2 см²
Sбок = 4√2 + 4√2 + 8√2 = 16√2 см²
2.
Пусть М - середина AD.
Соединим точки М и С, так как они лежат в одной грани. МС - отрезок сечения.
Проведем МК - среднюю линию ΔАА₁D.
Тогда МК║А₁D. МК - отрезок сечения.
Параллельные грани пересекаются по параллельным прямым, поэтому в грани ВВ₁С₁С проведем диагональ В₁С, которая параллельна А₁D, а значит и МК.
В₁СМК - искомое сечение (А₁D║МК, значит параллельна и плоскости сечения, и сечение проходит через заданные точки).
Так как МК║В₁С, а КВ₁∦МС, то сечение - трапеция.
Так как ΔКА₁В₁ = ΔMDC по двум катетам, то КВ₁ = МС, ⇒ трапеция равнобедренная.
В₁С = а√2 как диагональ квадрата,
МК = а√2/2 как средняя линия ΔАА₁D.
Из ΔMDC по теореме Пифагора
МС = √(MD² + DC²) = √(a²/4 + a²) = a√5/2
Трапеция равнобедренная, поэтому
СН = РВ₁ = (СВ₁ - МК)/2 = (а√2 - а√2/2)/2 = а√2/4
Из треугольника СМН по теореме Пифагора
СН = √(СМ² - СН²) = √(5a²/4 - 2a²/16) = √(18a²/16) = 3a√2/4
Sсеч = (CB₁ + MK)/2 · CH = (a√2 + a√2/2)/2 · 3a√2/4 = 3a√2/4 · 3a√2/4
Sсеч = 9a² · 2 / 16 = 9a²/8