3. Із точок А і В, що лежать у двох перпендикулярних площинах, проведено перпендикуляри AC i BD до лінії перетину цих площин. Знайдіть довжину відрізка АС, якщо AD = 5 см, CB = 2корня10 с BD = 2корня6 см.
Начертим острые углы произвольной величины и обозначим их α и β, соблюдая условие α < β .
Начертим окружность с центром О. От вершин О1 и О2 данных углов как из центра тем же радиусом отметим т. А и В на сторонах угла β, точки С и Т на сторонах угла α. Циркулем измерим дугу АВ и два раза отложим её на первой окружности. Угол СОВ=2β
По общепринятому проведем биссектрисы О1k угла β и О2m угла α. Дугу Вk, равную половине угла β, отложим от т.В на первой окружности (прибавим к уже построенному углу СОВ).
Отложим на той же окружности дугу Сm, равную половине угла α, от т.С в пределах угла СОА. Получившийся угол mОk равен требуемому по условию .2,5 β - 0,5 α (на рисунке он окрашен голубым цветом)
Пусть отрезки, на которые делит гипотенузу высота, проведенная к гипотенузе, будут х и (15-х)
Из равенства 9²=х*15, откуда х= 81/15=5,4, тогда другой отрезок равен 15-5,4= 9,6
Итак, один отрезок равен 5, 4см другой 9,6см.
Можно было бы решить и так. Квадрат другого катета, равного 12, есть произведение гипотенузы на проекцию этого катета на гипотенузу. Иными словами, 12²=у*15, где у- проекция катета на гипотенузу, откуда у =144/15=9,6.
Один отрезок равен 9,6см, тогда другой 15-9,6=5,4/см/
Начертим острые углы произвольной величины и обозначим их α и β, соблюдая условие α < β .
Начертим окружность с центром О. От вершин О1 и О2 данных углов как из центра тем же радиусом отметим т. А и В на сторонах угла β, точки С и Т на сторонах угла α. Циркулем измерим дугу АВ и два раза отложим её на первой окружности. Угол СОВ=2β
По общепринятому проведем биссектрисы О1k угла β и О2m угла α. Дугу Вk, равную половине угла β, отложим от т.В на первой окружности (прибавим к уже построенному углу СОВ).
Отложим на той же окружности дугу Сm, равную половине угла α, от т.С в пределах угла СОА. Получившийся угол mОk равен требуемому по условию .2,5 β - 0,5 α (на рисунке он окрашен голубым цветом)
1. По теореме Пифагора найдем гипотенузу.
Она равна √(9²+12²)=√(81+144)=15/см/
Пусть отрезки, на которые делит гипотенузу высота, проведенная к гипотенузе, будут х и (15-х)
Из равенства 9²=х*15, откуда х= 81/15=5,4, тогда другой отрезок равен 15-5,4= 9,6
Итак, один отрезок равен 5, 4см другой 9,6см.
Можно было бы решить и так. Квадрат другого катета, равного 12, есть произведение гипотенузы на проекцию этого катета на гипотенузу. Иными словами, 12²=у*15, где у- проекция катета на гипотенузу, откуда у =144/15=9,6.
Один отрезок равен 9,6см, тогда другой 15-9,6=5,4/см/
ответ 9,6см; 5,4см.