Пусть треугольник BAC равнобедренный, AB=AC=10 см.
Возьмем произвольную точку K на основании BC и проведем KM||AC иKN||AB
KM=AN, KN=AM -противоположные стороны параллелограмма.
Докажем, что KM=BM. Угол 2=углу 4 как соответственные углы при AC||KM и секущей KC. Но угол 4=углу 1 (углы при основании равнобедренного треугольника). Отсюда угол 2=углу 1. Значит треугольник BMK равнобедренный и KM=BM как его боковые стороны.
Аналогично докажем, что KN=NC. Угол 3=углу 1 как соответственные углы при AB||KN и секущей KB. Но угол 1=углу 4 (углы при основании равнобедренного треугольника). Отсюда угол3 =углу 4. Значит треугольник KNC равнобедренный и KN=NC как его боковые стороны.
ответ: 20 см
Решение: смотри рисунок.
Пусть треугольник BAC равнобедренный, AB=AC=10 см.
Возьмем произвольную точку K на основании BC и проведем KM||AC иKN||AB
KM=AN, KN=AM -противоположные стороны параллелограмма.
Докажем, что KM=BM. Угол 2=углу 4 как соответственные углы при AC||KM и секущей KC. Но угол 4=углу 1 (углы при основании равнобедренного треугольника). Отсюда угол 2=углу 1. Значит треугольник BMK равнобедренный и KM=BM как его боковые стороны.
Аналогично докажем, что KN=NC. Угол 3=углу 1 как соответственные углы при AB||KN и секущей KB. Но угол 1=углу 4 (углы при основании равнобедренного треугольника). Отсюда угол3 =углу 4. Значит треугольник KNC равнобедренный и KN=NC как его боковые стороны.
Периметр параллелограмма =KM+MA+AN+NK=BM+MA+AN+NC=BA+AC=10+10=20 (см)
найти: Sполн.пов
решение.
Sполн.пов=Sбок+Sосн
Sбок=Росн*ha, ha-апофема
Sосн=а²
АВСД - квадрат. найдем диагональ АС по теореме Пифагора:
АС²=АВ²+ВС². АС=2√2
рассмотрим ΔМАО:
(О- точка пересечения диагоналей квадрата-основания пирамиды)
<MAO=45°,
AO=2√2/2, AO=√2. ΔMAO - прямоугольный равнобедренный, ⇒МО=√2
МК-апофема.
рассмотрим ΔМОК: <MOK=90°(MO-высота пирамиды)
ОК=2:2, ОК=1
найдем МК по тереме Пифагора:
МК²=МО²+ОК², МК=√3
Sполн.пов=(4*2*√3)+2²=8√3+4
Sполн.пов=8√3+4