Решение Площадь боковой поверхности призмы равна произведению ее высоты на периметр основания. Сумма углов при одной стороне параллелограмма равна 180° Следовательно, < АВС = 180° - 30° = 150° Пусть АВ = 4см ВС = 4√3 см Найдем по теореме косинусов диагональ основания АС. АС² = АВ² + ВС² - 2*АВ*ВС* cos (150°) косинус тупого угла - число отрицательное. АС² = 16 + 48 + [32√3*(√3)]/2=112 АС = √112 = 4√7 Высота призмы СС₁ = АС / ctg(60°)=(4√7) / 1/√3 CC₁ = 4√21 Площадь боковой поверхности данной призмы S = H*P = 4√21*2(4+4√3) = 32√21*(1+√3) см² ответ: 32√21*(1+√3) см²
Осевое сечение - это равнобедренная трапеция. Проведём в ней диагональ и высоту из одной точки, образовался прямоугольный треугольник. Найдём в нём неизвестный катет: √(13^2-5^2)=12. Этот катет располагается на большем основании. Известно что радиусы оснований конуса, а значит и основания трапеции относятся как 1:2, значит можно составить уравнение, где 12-х - длина меньшего основания, а 2х - на сколько большее основание больше:
(12-х):(12-х+2х)=1:2
(12-х):(12+х)=1:2
12+х=24-2х
3х=12
х=4
Длина меньшего основания: 12-4=8
Большего: 12+4=16
Радиус меньшего основания: 8/2=4
Большего: 16/2=8
Нужно найти боковую сторону L трапеции:
L=√(5^2+x^2)=√(5^2+4^2)=√41
По формуле находим площадь боковой поверхности: pi*L*(R+r)=12√41*pi
Решение
Площадь боковой поверхности призмы равна произведению ее высоты на периметр основания.
Сумма углов при одной стороне параллелограмма равна 180°
Следовательно, < АВС = 180° - 30° = 150°
Пусть АВ = 4см
ВС = 4√3 см
Найдем по теореме косинусов диагональ основания АС.
АС² = АВ² + ВС² - 2*АВ*ВС* cos (150°)
косинус тупого угла - число отрицательное.
АС² = 16 + 48 + [32√3*(√3)]/2=112
АС = √112 = 4√7
Высота призмы
СС₁ = АС / ctg(60°)=(4√7) / 1/√3
CC₁ = 4√21
Площадь боковой поверхности данной призмы
S = H*P = 4√21*2(4+4√3) = 32√21*(1+√3) см²
ответ: 32√21*(1+√3) см²
Осевое сечение - это равнобедренная трапеция. Проведём в ней диагональ и высоту из одной точки, образовался прямоугольный треугольник. Найдём в нём неизвестный катет: √(13^2-5^2)=12. Этот катет располагается на большем основании. Известно что радиусы оснований конуса, а значит и основания трапеции относятся как 1:2, значит можно составить уравнение, где 12-х - длина меньшего основания, а 2х - на сколько большее основание больше:
(12-х):(12-х+2х)=1:2
(12-х):(12+х)=1:2
12+х=24-2х
3х=12
х=4
Длина меньшего основания: 12-4=8
Большего: 12+4=16
Радиус меньшего основания: 8/2=4
Большего: 16/2=8
Нужно найти боковую сторону L трапеции:
L=√(5^2+x^2)=√(5^2+4^2)=√41
По формуле находим площадь боковой поверхности: pi*L*(R+r)=12√41*pi