task/29635078 Дан параллелограмм ABCD , F – точка пересечения диагоналей , О – произвольная точка пространства. Доказать: 1) (OA) ⃗+(OC) ⃗=(OB) ⃗+ (OD) ⃗ ; 2) (OF) ⃗=1/4((OA) ⃗+(OB) ⃗+(OC) ⃗+(OD) ⃗) .
Решение : Если векторы исходят из одной точки , то вектор суммы исходит из общей начальной точки векторов и является диагональю параллелограмма, сторонами которого являются данные векторы . * * * ( Сумма векторов , правило параллелограмма ) * * *
Чтобы рисунок объяснить - надо хорошо потрудиться. О и Q - центры двух окружностей. OC=OD=R и QC=QD=r⇒ OQ - серединный перпендикуляр к отрезку СD. OQ⊥ CD и СK=KD.
OD⊥BD и СQ⊥AC - по определению касательной.
Равные острые углы отмечены одинаковым цветом. Один из них вписанный и измеряется половиной дуги CD в соответствующей окружности, второй центральный и измеряется дугой, на которую опирается. ∪СK=∪KD=(1/2)∪CD. Третий угол в каждом треугольнике, это угол между касательной и хордой, он также равен половине соответствующей дуги. Поэтому ∠КОD=∠CAD=∠KDB и ∠CQK=∠BCD=∠ACD. Треугольники ACD и BCD подобны по двум углам. ВС:СD=CD:AD; 4:CD=CD:9; CD²=4·9 CD=6 О т в е т. СD=6.
task/29635078 Дан параллелограмм ABCD , F – точка пересечения диагоналей , О – произвольная точка пространства. Доказать: 1) (OA) ⃗+(OC) ⃗=(OB) ⃗+ (OD) ⃗ ; 2) (OF) ⃗=1/4((OA) ⃗+(OB) ⃗+(OC) ⃗+(OD) ⃗) .
Решение : Если векторы исходят из одной точки , то вектор суммы исходит из общей начальной точки векторов и является диагональю параллелограмма, сторонами которого являются данные векторы . * * * ( Сумма векторов , правило параллелограмма ) * * *
1) (OA) ⃗+ (OC) ⃗ =2*(OF) ⃗ и (OB) ⃗+(OD) ⃗ = 2*(OF) ⃗
значит (OA) ⃗+ (OC) ⃗ = (OB) ⃗+(OD) ⃗
2) (1/4) * [ (OA) ⃗+(OB) ⃗+ (OC) ⃗+(OD) ⃗] =
(1/4) * [ (OA) ⃗+ (OC) ⃗+(OB) ⃗+(OD) ⃗] =
(1/4) * [ 2*(OF) ⃗+2*(OF) ] =
(1/4) * 4*(OF) ⃗ = (OF) ⃗ .
О и Q - центры двух окружностей.
OC=OD=R и QC=QD=r⇒
OQ - серединный перпендикуляр к отрезку СD.
OQ⊥ CD и СK=KD.
OD⊥BD и СQ⊥AC - по определению касательной.
Равные острые углы отмечены одинаковым цветом.
Один из них вписанный и измеряется половиной дуги CD в соответствующей окружности, второй центральный и измеряется дугой, на которую опирается.
∪СK=∪KD=(1/2)∪CD.
Третий угол в каждом треугольнике, это угол между касательной и хордой, он также равен половине соответствующей дуги.
Поэтому
∠КОD=∠CAD=∠KDB
и
∠CQK=∠BCD=∠ACD.
Треугольники ACD и BCD подобны по двум углам.
ВС:СD=CD:AD;
4:CD=CD:9;
CD²=4·9
CD=6
О т в е т. СD=6.