30 . знайдіть площу поверхні прямої призми основа якої трикутник зі сторонами 13 см 14 см 15 см а висота призми дорівнює радіусу вписаного кола основи
Как правило, такое краткое условие дается с рисунком. Понимается так: Сечение конуса образует равносторонний треугольник АВС с основанием АС. Радиус основания конуса 10, образующая 12. ОК⊥АС. Требуется найти высоту конуса ВО и длину отрезка ОК
По условию ∆ АВС -равносторонний, боковые стороны равны 12, а диаметр основания равен 10•2=20. Следовательно, АВС не является осевым сечением конуса. Соединим центр О основания с А и С.
Треугольник АОС равнобедренный, АС=L=12 (из условия); высота ОК делит его на два равных прямоугольных треугольника с гипотенузой, равной R=10, и катетами АК=АС:2=6 и ОК (его длину нужно найти).
Отношение АК:ОА=6:10=3:5, следовательно, ∆ АОК "египетский, его катет ОК=8 ( можно найти по т.Пифагора)
Высота ВО конуса перпендикулярна основанию и проецируется в его центр. ∆ ВОС - прямоугольный. Катет ОС=R=10, гипотенуза ВС=12.
(х+5)см-другая сторона прямоугольника
Р-2*(а+в); 2*(х+х+5)=50
2х+5=25
2х=25-5
2х=20
х=10
10см-одна сторона прямоугольника; 10+5=15(см)-другая
2. угол А-угол прямоугольника
3х+6х=90, где 3хград и6х град-углы, которые образует диагональ со сторонами прям-ка
9х=90; х=10; 3*10=30град; 6*10=60град
Сумма углов треуг-каАОВ 180град: 60+60+х=180; х=60град
Из треуг-каАОД 30+30+х=180; х=120
60град-угол между диагоналями (берём наименьший!)
3. АВСД-параллелограмм; ВД-диагональ, ВД перпендикуляна АД! ВД=АД
тр-ник АВД-прямоугольный; tgA=BD /AD; tgA=1; УголА=45град
уголС=углуА=45гра(противоположные углы парал-ма)
УголА+уголВ=180град; УголВ=180-45; уголВ=135град
уголД=углуВ=135град
ответ. 45град;135град;45; 135градусов
По условию ∆ АВС -равносторонний, боковые стороны равны 12, а диаметр основания равен 10•2=20. Следовательно, АВС не является осевым сечением конуса. Соединим центр О основания с А и С.
Треугольник АОС равнобедренный, АС=L=12 (из условия); высота ОК делит его на два равных прямоугольных треугольника с гипотенузой, равной R=10, и катетами АК=АС:2=6 и ОК (его длину нужно найти).
Отношение АК:ОА=6:10=3:5, следовательно, ∆ АОК "египетский, его катет ОК=8 ( можно найти по т.Пифагора)
Высота ВО конуса перпендикулярна основанию и проецируется в его центр. ∆ ВОС - прямоугольный. Катет ОС=R=10, гипотенуза ВС=12.
По т.Пифагора ВО=√(ВС²-ОС²)=√(144-100)=2√11