Если соединить точки на серединах сторон треугольника, то получим средние линии каждой из сторон. Средней линией треугольника называется отрезок, соединяющий средины двух его сторон Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны. Поскольку каждая сторона меньшего треугольника равна половине параллельной стороны большего, их отношение равно 1:2 и коэффициент подобия k равне 1/2 или 2, если считать отношение большей стороны к параллельной ей стороне меньшего треугольника, равное 2:1.
Рассмотрим треугольник АВС. Он равнобедренный по условию, так как боковые стороны у него равны. Значит, углы при основании тоже равны - по свойству равнобедренного треугольника.
Так как по условию треугольник АВС ещё и прямоугольный, то сумма его острых углов даёт 90° - по свойству прямоугольного треугольника.
Найдем углы при основании:
BAC = ACB = 90° : 2 = 45°.
Далее рассмотрим углы АСВ и ЕСD - они вертикальные, значит АСВ = ЕСD = 45°.
Так как треугольник СЕD по условию тоже равнобедренный (боковые стороны у него равны по условию), то углы при основании равны. Отсюда находим угол СЕD, он же угол х:
Средней линией треугольника называется отрезок, соединяющий средины двух его сторон
Средняя линия треугольника, соединяющая середины двух данных сторон, параллельна третьей стороне и равна ее половине
Если три стороны одного треугольника пропорциональны трем сторонам другого треугольника, то такие треугольники подобны.
Поскольку каждая сторона меньшего треугольника равна половине параллельной стороны большего, их отношение равно 1:2 и коэффициент подобия k равне 1/2 или 2, если считать отношение большей стороны к параллельной ей стороне меньшего треугольника, равное 2:1.
Рассмотрим треугольник АВС. Он равнобедренный по условию, так как боковые стороны у него равны. Значит, углы при основании тоже равны - по свойству равнобедренного треугольника.
Так как по условию треугольник АВС ещё и прямоугольный, то сумма его острых углов даёт 90° - по свойству прямоугольного треугольника.
Найдем углы при основании:
BAC = ACB = 90° : 2 = 45°.
Далее рассмотрим углы АСВ и ЕСD - они вертикальные, значит АСВ = ЕСD = 45°.
Так как треугольник СЕD по условию тоже равнобедренный (боковые стороны у него равны по условию), то углы при основании равны. Отсюда находим угол СЕD, он же угол х:
(180° - угол ЕСD) : 2
(180° - 45°) : 2 = 67,5° - угол х.