В
Все
М
Математика
О
ОБЖ
У
Українська мова
Х
Химия
Д
Другие предметы
Н
Немецкий язык
Б
Беларуская мова
М
Музыка
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
У
Українська література
Р
Русский язык
Ф
Французский язык
П
Психология
О
Обществознание
А
Алгебра
М
МХК
Г
География
И
Информатика
П
Право
А
Английский язык
Г
Геометрия
Қ
Қазақ тiлi
Л
Литература
И
История
Гавхарчик
Гавхарчик
09.06.2021 04:01 •  Геометрия

35 диагональ выпуклого четырехугольника abcd, выписанного в окружность с центром в o, взаимно перпендикулярны. докажите, что ломанная aoc делит четырехугольник на две части равной площади.

Показать ответ
Ответ:
vlad200883
vlad200883
09.10.2020 13:35

Пусть K – точка пересечения диагоналей AC и BD. Если O принадлежит AC, то решение очевидно. Иначе, один из получившихся четырёхугольников – выпуклый. Пусть тогда M и N – основания перпендикуляров, опущенных из точки O на AC и BD. Тогда

SABCO = ½ AC·OM + ½ AC·BK = ½ AC·(OM + BK) = ½ AC·(KN + BK) = ¼ AC·BD = ½ SABCD.

0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота