35 у прямокутника діагональ створює з більшою стороною кут, який дорівнює 17*. знайдіть кут між діагональми, що лежить навпроти більшої сторони прямокутника
2) Т.к. треугольник равнобедренный, то высота делит его основание пополам, т.е. основание (обозначим его AO) одного из двух прямоугольных треугольников равно: AO=AC/2=12/2=6 см.
3) Рассмотрим один из прямоугольных треугольников (обозначим его AOB)
Мы знаем, чему равны оба катета прямоугольного треугольника (АО=6 см, ОB=h=8 см), теперь по теореме Пифагора найдём его гипотенузу AB:
AB=√(AO²+ОС²)=√(6²+8²)=√(36+64)=√100=10 см.
Т.к. треугольник равнобедренный, то BC - тоже 10 см.
4) Периметр равнобедренного треугольника P=AB+BC+AC=10+10+12=32 см.
1) ∠A=∠C=90°, т.к опираются на диаметр. Пусть точка К - точка пересечения хорды АС и диаметра. Рассмотрим тр-к АКО- прямоугольный, у которого катет в 2 раза меньше гипотенузы, значит один из углов 30°, а другой -60°. Рассмотрим тр-к АВО: он равнобедренный с углом 60°, а значит все его углы равны - 60°. Рассм. треугольник АВС - равнобедренный т.к ВК - медиана и высота, тогда ВК - бисектриса ∠АВС, тогда ∠АВС=120°. Четырехугольник ABCD - вписанный, тогда ∠В+∠D=180°, тогда ∠D=60° 2) Найдем боковую сторону треугольника по теореме Пифагора. Она равна - 15 см. Площадь этого треугольника равна ·9·24=108см², а периметр 54 см. r= где р - полупериметр r=4 см R= R= 12,5 см
h=S/(½*a)=48/(0.5*12)=48/6=8 см
2) Т.к. треугольник равнобедренный, то высота делит его основание пополам, т.е. основание (обозначим его AO) одного из двух прямоугольных треугольников равно: AO=AC/2=12/2=6 см.
3) Рассмотрим один из прямоугольных треугольников (обозначим его AOB)
Мы знаем, чему равны оба катета прямоугольного треугольника (АО=6 см, ОB=h=8 см), теперь по теореме Пифагора найдём его гипотенузу AB:
AB=√(AO²+ОС²)=√(6²+8²)=√(36+64)=√100=10 см.
Т.к. треугольник равнобедренный, то BC - тоже 10 см.
4) Периметр равнобедренного треугольника P=AB+BC+AC=10+10+12=32 см.
ответ: P=32 см
Рассм. треугольник АВС - равнобедренный т.к ВК - медиана и высота, тогда ВК - бисектриса ∠АВС, тогда ∠АВС=120°.
Четырехугольник ABCD - вписанный, тогда ∠В+∠D=180°, тогда ∠D=60°
2) Найдем боковую сторону треугольника по теореме Пифагора. Она равна - 15 см.
Площадь этого треугольника равна ·9·24=108см², а периметр 54 см.
r= где р - полупериметр r=4 см
R= R= 12,5 см