РЕШЕНИЕ 1. Рисунок к задаче в приложении. Вычисляем гипотенузу АВ по т. Пифагора (3:4:5) АВ = 10 ("в уме") Прямоугольный треугольник опирается на диаметр описанной окружности АВ = 10 - диаметр AO = R = 5. Высоту OS - расстояние до точки S также по т. Пифагора OS = √(13²-5²) = √(169-25) = √144 = 12 - расстояние - ОТВЕТ 2. Рисунок у задаче в приложении. Радиус вписанной окружности в правильный треугольник по формуле r = a/2√3 = 1 - радиус и катет Находим гипотенузу - расстояние до стороны b² = (√3)² + 1² = 4 b = √4 = 2 - расстояние - ОТВЕТ
Пусть тркугольник ABC ,ромб СLMN тк ромб частный случай параллелограмма то ML паралельно BC отсюда угол LMA тоже прямой,тогда прямоугольные треугольники ABC и AML подобны по общему острому углу соответственно треугольник AML тоже равнобедренный тогда AM=ML=a где а-сторона ромба тогда из теоремы пифагора AC=b*sqrt(2)=AL+a=a*sqrt(2)+a=a(sqrt(2)+1) b-известный катет откуда a=b*sqrt(2)/(1+sqrt(2))=(2+sqrt(2))*sqrt(2)/5*(1+sqrt(2))=sqrt(2)*(1+sqrt(2))*sqrt(2)/5*(1+sqrt(2))=sqrt(2)*sqrt(2)/5=2/5=0,4
1.
Рисунок к задаче в приложении.
Вычисляем гипотенузу АВ по т. Пифагора (3:4:5)
АВ = 10 ("в уме")
Прямоугольный треугольник опирается на диаметр описанной окружности
АВ = 10 - диаметр
AO = R = 5.
Высоту OS - расстояние до точки S также по т. Пифагора
OS = √(13²-5²) = √(169-25) = √144 = 12 - расстояние - ОТВЕТ
2.
Рисунок у задаче в приложении.
Радиус вписанной окружности в правильный треугольник по формуле
r = a/2√3 = 1 - радиус и катет
Находим гипотенузу - расстояние до стороны
b² = (√3)² + 1² = 4
b = √4 = 2 - расстояние - ОТВЕТ
ML паралельно BC отсюда угол LMA тоже прямой,тогда прямоугольные треугольники ABC и AML подобны по общему острому углу соответственно треугольник AML тоже равнобедренный тогда AM=ML=a где а-сторона ромба тогда из теоремы пифагора AC=b*sqrt(2)=AL+a=a*sqrt(2)+a=a(sqrt(2)+1) b-известный катет откуда
a=b*sqrt(2)/(1+sqrt(2))=(2+sqrt(2))*sqrt(2)/5*(1+sqrt(2))=sqrt(2)*(1+sqrt(2))*sqrt(2)/5*(1+sqrt(2))=sqrt(2)*sqrt(2)/5=2/5=0,4