Средняя линия треугольника и её свойства. Определение: средняя линия треугольника — это отрезок, соединяющий середины двух его сторон. У средней линии есть два свойства : первое свойство: средняя линия треугольника параллельна основанию и второе свойство: средняя линия равна половине основания. Доказательство. Через середину E боковой стороны BC проведём прямую ED параллельно основанию AC. По теореме Фалеса другая боковая сторона тоже разделится пополам. Значит, D — середина стороны AB, то есть отрезок ED — это средняя линия. А по построению наш отрезок параллелен основанию, вот и доказана параллельность средней линии основанию. Теперь докажем второе свойство: через точку D проведём прямую DF, параллельную боковой стороне BC. По теореме Фалеса основание AC разделится пополам, то есть точка F — середина стороны AC, и FC равно половине основания. А многоугольник CEDF — это параллелограмм (по построению), его противоположные стороны равны, то есть отрезок DE равен половинке основания — отрезку FC. То есть средняя линия равна половине основания. ЧТД.
Цитаты: "Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). Линейный угол - это угол, образованный пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. Таким образом, чтобы измерить двугранный угол, можно взять любую точку на его ребре и перпендикулярно ребру провести из неё лучи в каждую из граней.
АВ- двугранный угол, точка М удалена от плоскостей на расстояние m, то есть МС=МD=m. DК и CK перпендикулярны AB (теорема о трех перпендикулярах). <DKC- линейный угол данного нам двугранного угла, равного 120*. Проведем МК. Поскольку точка М равноудалена от сторон угла DKC, МК - биссектриса этого угла и <МКС=120° /2=60°.
В прямоугольном треугольнике КМС <MKC=60*, значит <KМC=30°. Следовательно КМ=2КС и по Пифагору 4КС²-КС²=m². Тогда КС=m/√3.
тут всё очевидно же
Объяснение:
Средняя линия треугольника и её свойства. Определение: средняя линия треугольника — это отрезок, соединяющий середины двух его сторон. У средней линии есть два свойства : первое свойство: средняя линия треугольника параллельна основанию и второе свойство: средняя линия равна половине основания. Доказательство. Через середину E боковой стороны BC проведём прямую ED параллельно основанию AC. По теореме Фалеса другая боковая сторона тоже разделится пополам. Значит, D — середина стороны AB, то есть отрезок ED — это средняя линия. А по построению наш отрезок параллелен основанию, вот и доказана параллельность средней линии основанию. Теперь докажем второе свойство: через точку D проведём прямую DF, параллельную боковой стороне BC. По теореме Фалеса основание AC разделится пополам, то есть точка F — середина стороны AC, и FC равно половине основания. А многоугольник CEDF — это параллелограмм (по построению), его противоположные стороны равны, то есть отрезок DE равен половинке основания — отрезку FC. То есть средняя линия равна половине основания. ЧТД.
Цитаты: "Двугранный угол, образованный полуплоскостями измеряется величиной его линейного угла, получаемого при пересечении двугранного угла плоскостью, перпендикулярной его ребру (то есть перпендикулярной к обеим плоскостям). Линейный угол - это угол, образованный пересечением двугранного угла с плоскостью, перпендикулярной к его ребру. Таким образом, чтобы измерить двугранный угол, можно взять любую точку на его ребре и перпендикулярно ребру провести из неё лучи в каждую из граней.
АВ- двугранный угол, точка М удалена от плоскостей на расстояние m, то есть МС=МD=m. DК и CK перпендикулярны AB (теорема о трех перпендикулярах). <DKC- линейный угол данного нам двугранного угла, равного 120*. Проведем МК. Поскольку точка М равноудалена от сторон угла DKC, МК - биссектриса этого угла и <МКС=120° /2=60°.
В прямоугольном треугольнике КМС <MKC=60*, значит <KМC=30°. Следовательно КМ=2КС и по Пифагору 4КС²-КС²=m². Тогда КС=m/√3.
Поскольку МК=2КС , МК=2m/√3 или МК=2m√3/3.
Объяснение: