4. (3 б) Установити відповідність між довжинами бічних сторін рівнобедрених трикутників (1-4), кут між якими дорівнює 30°, та їх площами (а-д). 1) 32 см а 196 см 2) 24 см б 100 см в 256 см 3) 28 см г 625 см д 144 см
Пусть a - основание, h - высота к основанию, b - боковая сторона, H - высота к ней. Поскольку ha = Hb = 2S; то H/2h = a/2b - это, очевидно, синус половины угла при вершине. Отсюда легко найти порядок построения. 1) проводятся две взаимно перпендикулярные прямые "1" и "2" , пересекающиеся в точке О. 2) вдоль прямой "1" от точки О откладывается h, это вершина А нужного треугольника. 3) параллельно этой прямой "1" НА РАССТОЯНИИ H от неё проводится еще одна прямая α; 4) рисуется окружность радиуса 2h с центром в точке А. Фиксируется точка пересечения этой окружности с прямой α - точка В1. 5) точка В1 соединяется с А, точка пересечения этой прямой с прямой "2" - вершина В нужного треугольника. Это всё.
Поскольку ha = Hb = 2S; то H/2h = a/2b - это, очевидно, синус половины угла при вершине. Отсюда легко найти порядок построения.
1) проводятся две взаимно перпендикулярные прямые "1" и "2" , пересекающиеся в точке О.
2) вдоль прямой "1" от точки О откладывается h, это вершина А нужного треугольника.
3) параллельно этой прямой "1" НА РАССТОЯНИИ H от неё проводится еще одна прямая α;
4) рисуется окружность радиуса 2h с центром в точке А. Фиксируется точка пересечения этой окружности с прямой α - точка В1.
5) точка В1 соединяется с А, точка пересечения этой прямой с прямой "2" - вершина В нужного треугольника.
Это всё.
20
Объяснение:
1) Найдем угол при основании:
(180 - 45) / 2 = 67,5.
Тогда основание равно:
2 * 1 * cos(67,5) = 2cos(67,5).
Высота треугольника равна: 1 * sin(67,5).
Площадь треугольника S равна:
S = 1/2 * 2cos(67,5) * sin(67,5) = 1/2 * sin(135) = 1/2 * √2/2 = √2/4.
Площадь проекции S' равна:
S' = S * cos(45) =√2/4 * √2/2 = 1/4.
2) Длина наклонной будет равна:
5 / sin(30) = 5 : 1/2 = 10.
Так как наклонные образуют с плоскостью одинаковый угол, то они равны, тогда их сумма составит:
10 + 10 = 20
Нет возможности нарисовать рисунок к задаче.