4.7. Прямые а и b лежат в одной плоскости. Покажите их всевозможные взаимные расположения.
LK =
4.1
4.
А) а и b параллельны; б) а и b пересекаются; в) а и b не пересекаются
г) а и b скрещивающиеся прямые; д) а и b не параллельны.
Плос!
перьцы прямой с. Как могут вра.
Sбок.= 24+24+40+40 = 128 см².
Объяснение:
Sбок.=SASB + SBSC + SDSC + SASD.
1. Грань ASB — прямоугольный треугольник, SASB = AB⋅SB/2= 8⋅6/2 = 24 см².
2. Грани BSC и ASB — равные треугольники, SBSC = 24 см².
3. Грань DSC — прямоугольный треугольник, это доказывается теоремой о трёх перпендикулярах.
Площадь ΔDSC равна S= DC⋅SC/2,
SC вычисляем по теореме Пифагора: SC= √8²+6² = 10 см;
SDSC = 8⋅10/2 = 40 см².
4. Грань ASD — прямоугольный треугольник, по теореме о трёх перпендикулярах.
SASD = SDSC = 40 см².
ответ: Sбок.= 24+24+40+40 = 128 см².
Sбок.= 24+24+40+40 = 128 см².
Объяснение:
Sбок.=SASB + SBSC + SDSC + SASD.
1. Грань ASB — прямоугольный треугольник, SASB = AB⋅SB/2= 8⋅6/2 = 24 см².
2. Грани BSC и ASB — равные треугольники, SBSC = 24 см².
3. Грань DSC — прямоугольный треугольник, это доказывается теоремой о трёх перпендикулярах.
Площадь ΔDSC равна S= DC⋅SC/2,
SC вычисляем по теореме Пифагора: SC= √8²+6² = 10 см;
SDSC = 8⋅10/2 = 40 см².
4. Грань ASD — прямоугольный треугольник, по теореме о трёх перпендикулярах.
SASD = SDSC = 40 см².
ответ: Sбок.= 24+24+40+40 = 128 см².