4.Діагоналі ромба АВСД, у якого , перетинаються в точці О. Пряма МА перпендикулярна до площини АВС, а точка К ділить діагональ ВД ромба у відношенні 1 : 3. Знайдіть відстань між точками М і К, якщо АМ= 4 см, АВ = 3 см.
b)Тангенс острого угла прямоугольного треугольника - это отношение противолежащего катета к прилежащему.
Значит надо построить прямоугольный треугольник, отношение катетов которого равно 1:4. Угол, лежащий против меньшего катета будет искомым.
Если это не задача на построение, то можно построить треугольник по клеточкам тетради так, чтобы один катет был равен, например, одному сантиметру, а другой - 4 см. Тогда угол, лежащий против катета в 1 см - искомый. На рисунке это ∠АВО.
Если задача на построение, то
строим две перпендикулярные прямые, для этого
проводим прямую а, отмечаем на ней две произвольные точки К и Р; проводим две окружности с центрами в этих точках произвольного одинакового радиуса, большего половины отрезка КР; через точки пересечения этих окружностей Е и Н проводим прямую. ЕН⊥а. О - точка пересечения прямых.
от точки О с циркуля откладываем равные отрезки вверх один (точка А), влево - 4 (точка В).
решение пусть в выпуклом четырехугольнике abcd ав + cd =вс +ad. (1) точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать.
ответ:ответ, проверенный экспертом
4.0/5
13
KuOV
главный мозг
4.9 тыс. ответов
26.7 млн пользователей, получивших
Объяснение:
a)(Фото)
https://ru-static.z-dn.net/files/dd9/6dbd3d984a1b49a60897ad7ac129c92c.png
b)Тангенс острого угла прямоугольного треугольника - это отношение противолежащего катета к прилежащему.
Значит надо построить прямоугольный треугольник, отношение катетов которого равно 1:4. Угол, лежащий против меньшего катета будет искомым.
Если это не задача на построение, то можно построить треугольник по клеточкам тетради так, чтобы один катет был равен, например, одному сантиметру, а другой - 4 см. Тогда угол, лежащий против катета в 1 см - искомый. На рисунке это ∠АВО.
Если задача на построение, то
строим две перпендикулярные прямые, для этого
проводим прямую а, отмечаем на ней две произвольные точки К и Р; проводим две окружности с центрами в этих точках произвольного одинакового радиуса, большего половины отрезка КР; через точки пересечения этих окружностей Е и Н проводим прямую. ЕН⊥а. О - точка пересечения прямых.
от точки О с циркуля откладываем равные отрезки вверх один (точка А), влево - 4 (точка В).
соединяем получившиеся точки;
∠АВО - искомый.
https://ru-static.z-dn.net/files/dbc/dd6b3aac185aecfed037c2300250715f.png
решение
пусть в выпуклом четырехугольнике abcd
ав + cd =вс +ad. (1)
точка о пересечения биссектрис углов а и в равноудалена от сторон ad, ав и вс, поэтому можно провести окружность с центром о, касающуюся указанных трех сторон (рис. 238, а). докажем, что эта окружность касается также стороны cd и, значит, является вписанной в четырехугольник abcd.
предположим, что это не так. тогда прямая cd либо не имеет общих точек с окружностью, либо является секущей. рассмотрим первый случай (рис. 238, б). проведем касательную c'd', параллельную стороне cd (с' и d' точки пересечения касательной со сторонами вс и ad). так как abc'd' описанный четырехугольник, то по свойству его сторон
но вс' =вс -с'с, ad' =ad - d'd, поэтому из равенства (2) получаем:
правая часть этого равенства в силу (1) равна cd. таким образом, приходим к равенству
т.е. в четырехугольнике ccdd' одна сторона равна сумме трех других сторон. но этого не может быть, и, значит, наше предположение ошибочно. аналогично можно доказать, что прямая cd не может быть секущей окружности. следовательно, окружность касается стороны cd, что и требовалось доказать.