4. Дан тупой угол АОВ и точка C, лежащая в его внутренней области. 1) Постройте луч OD проходящий через точку С лежащий внутри угла АОВ 2) Запишите, чему равна величина угла АОВ 3) Постройте развернутый угол ВОК
Диагонали параллелограмма точкой пересечения делятся пополам Меньшую из сторон параллелограмма найдём по теореме косинусов из треугольника со сторонами 5, 6 и углом меж ними 60° a² = 5²+6²-2*5*6*cos(60°) = 25+36-60*1/2 = 25+36-30 = 25+6 = 31 a = √31 см Большую сторону найдём из тупоугольного треугольника со сторонами 5,6 и углом меж ними 180-60 = 120 b² = 5²+6²-2*5*6*cos(120°) = 25+36-60*(-1/2) = 25+36+30 = 25+6 = 91 b = √91 см
Большая диагональ, по теореме косинусов d₁² = 5²+7²-2*5*7*cos(120°) = 25+49-70*(-1/2) = 74+35 = 109 d₁ = √109 см Меньшая диагональ найдётся при угле меж сторонами 180-120 = 60° d₂² = 5²+7²-2*5*7*cos(60°) = 25+49-70*1/2 = 74-35 = 39 d₂ = √39 см
методика такая полупериметр p = 1/2(a+b+c) площадь по формуле Герона S = √(p(p-a)(p-b)(p-c)) и радиус описанной окружности по известным сторонам S = abc/(4R) R = abc/(4S) а) 13, 14, 15; p = 21 S = √ 7056 = 84 R = 13*14*15/(84*4) = 8,125 = 8 1/8 б) 15, 13, 4; p = 16 S = √576 = 24 R = 15*13*4/(4*24) = 5*13/8 = 65/8 = 8,125 в) 35, 29, 8; p = 36 S = √7056 = 84 R = 35*29*8/(4*84) = 35*29/42 = 5*29/6 = 145/6 = 24 1/6 г) 4, 5, 7. p = 8 S = √96 = 4√6 R = 4*5*7/(16√6) = 5*7/(4√6)= 35/(4√6)
4) Медиана делит противоположную сторону пополам ⇒ DС = ВD = 12 (см); ВС= 12+12 = 24 (см) АВ = ВС (по условию) АВ = 24см AB + DC = 24 + 24 = 48 (cм) - сумма двух сторон А дальше не решается, задача написана не до конца.
Меньшую из сторон параллелограмма найдём по теореме косинусов из треугольника со сторонами 5, 6 и углом меж ними 60°
a² = 5²+6²-2*5*6*cos(60°) = 25+36-60*1/2 = 25+36-30 = 25+6 = 31
a = √31 см
Большую сторону найдём из тупоугольного треугольника со сторонами 5,6 и углом меж ними 180-60 = 120
b² = 5²+6²-2*5*6*cos(120°) = 25+36-60*(-1/2) = 25+36+30 = 25+6 = 91
b = √91 см
Большая диагональ, по теореме косинусов
d₁² = 5²+7²-2*5*7*cos(120°) = 25+49-70*(-1/2) = 74+35 = 109
d₁ = √109 см
Меньшая диагональ найдётся при угле меж сторонами 180-120 = 60°
d₂² = 5²+7²-2*5*7*cos(60°) = 25+49-70*1/2 = 74-35 = 39
d₂ = √39 см
методика такая
полупериметр
p = 1/2(a+b+c)
площадь по формуле Герона
S = √(p(p-a)(p-b)(p-c))
и радиус описанной окружности по известным сторонам
S = abc/(4R)
R = abc/(4S)
а) 13, 14, 15;
p = 21
S = √ 7056 = 84
R = 13*14*15/(84*4) = 8,125 = 8 1/8
б) 15, 13, 4;
p = 16
S = √576 = 24
R = 15*13*4/(4*24) = 5*13/8 = 65/8 = 8,125
в) 35, 29, 8;
p = 36
S = √7056 = 84
R = 35*29*8/(4*84) = 35*29/42 = 5*29/6 = 145/6 = 24 1/6
г) 4, 5, 7.
p = 8
S = √96 = 4√6
R = 4*5*7/(16√6) = 5*7/(4√6)= 35/(4√6)
Р = 4,8 * 3 = 14,4 (см)
ответ: 14,4 см - периметр Δ.
2) В равнобедренном Δ боковые стороны равны
7,3 + 7,3 = 14,6 (см) - сумма двух боковых сторон
22,3 - 14,6 = 7,7 (см)
ответ: 7,7 см - основание Δ
3) Углы при основании равнобедренного треугольника равны.
⇒ ∠А = ∠С.
Сумма углов треугольника = 180°=
⇒∠А = ∠С = (180° - 74°) : 2 = 106° : 2 = 54°
Биссектриса делит угол пополам,
⇒ ∠ВАD = ∠САD = 54° : 2 = 27°
ответ: ∠САD = 27°
4) Медиана делит противоположную сторону пополам
⇒ DС = ВD = 12 (см);
ВС= 12+12 = 24 (см)
АВ = ВС (по условию)
АВ = 24см
AB + DC = 24 + 24 = 48 (cм) - сумма двух сторон
А дальше не решается, задача написана не до конца.