Для доказательства равенства отрезков следует доказать равенство треугольников, образованных указанными отрезками, высотой равнобедренного треугольника,которая как раз соединяет вершину равнобедренного треугольника и середину основания, и сторонами равносторонних треугольников, построенных на сторонах равнобедренного треугольника. Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.
В правильной треугольной пирамиде полная поверхность равна 16корень из 3 см^2, а площадь основания- 4корень из 3 см^2.Найдите апофему и плоский угол при вершине пирамиды.
Зная площадь основания, найдём величину стороны а основания из формулы So = a²√3/4.
Отсюда a = √(4S/√3) = √(4*4√3/√3) = 4см.
Находим площадь боковой поверхности.
Sбок = S - So = 16√3 - 4√3 = 8√3 см².
Площадь одной боковой грани в 3 раза меньше, поэтому:
Sгр = 8√3/3 см².
Из формулы площади грани как треугольника найдём значение апофемы (это высота боковой грани).
Sгр = (1/2)aA, отсюда находим апофему.
А = 2Sгр/а = 2*(8√3/3)/4 = (4√3/3) см.
Угол при вершине равен 2arctg((a/2)/A) = 2arctg(2/(4√3/3)) =
Доказательство проводится через признак равенства треугольников по двум сторонам и углу между ними. Стороны равны по условию и построению, а углы равны по условию и по тому, что высота в равнобедренном треугольнике является также и биссектрисой.
В правильной треугольной пирамиде полная поверхность равна 16корень из 3 см^2, а площадь основания- 4корень из 3 см^2.Найдите апофему и плоский угол при вершине пирамиды.
Зная площадь основания, найдём величину стороны а основания из формулы So = a²√3/4.
Отсюда a = √(4S/√3) = √(4*4√3/√3) = 4см.
Находим площадь боковой поверхности.
Sбок = S - So = 16√3 - 4√3 = 8√3 см².
Площадь одной боковой грани в 3 раза меньше, поэтому:
Sгр = 8√3/3 см².
Из формулы площади грани как треугольника найдём значение апофемы (это высота боковой грани).
Sгр = (1/2)aA, отсюда находим апофему.
А = 2Sгр/а = 2*(8√3/3)/4 = (4√3/3) см.
Угол при вершине равен 2arctg((a/2)/A) = 2arctg(2/(4√3/3)) =
= 2arctg(3/(2√3) ≈ 81,7868 градуса.