Отрезки средней линии трапеции являются средними линиями треугольников АВС и АСD, так как эти отрезки проходят через середину боковой стороны параллельно основанию. По свойствам средней линии имеем: ВС=2*2=4 см, а АD=2*5=10 см. Трапеция равнобедренная, значит высота ВН, проведенная у большему основанию, делит его на два отрезка, большй из которых равен полусумме оснований, а меньший - их полуразности. Значит АН=(10-4):2=3 см. В прямоугольном треугольнике АВН катет АН равен половине гипотенузы АВ, следовательно, угол, против которого лежит этот катет (<ABH), равен 30° (свойство). В прямоугольном треугольнике сумма острых углов равна 90°, значит <A=90°-30°=60°. Углы трапеции, прилежащие к боковой стороне, в сумме равны 180°. Значит угол В=180°-60°=120°. Так как трапеция равнобедренная, углы при основаниях равны. ответ: <A=<D=60°, <B=<C=120°.
Диагональ делит трапецию на два треугольника с основаниями ВС и АД, длина которых вдвое больше средней линии каждого треугольника. Тогда ВС=4 см, АД=10 см. Проведем СР||АВ Противоположные стороны четырехугольника АВСР параллельны. АВСР - параллелограмм, ВС=АР=4 см, и СР=АВ=6 см РД=АД-АР=10-4=6 см Все стороны треугольника РСД равны. Треугольник РСД - равносторонний. Все углы равностороннего треугольника равны 60°. ∠ ВСР=∠ВАР=60° ∠ВСД=СВА=60°+60°=120° Углы при каждом из оснований равнобедренной трапеции равны. Острые углы данной трапеции равны 60°, тупые - 120°.
ВС=2*2=4 см, а АD=2*5=10 см.
Трапеция равнобедренная, значит высота ВН, проведенная у большему основанию, делит его на два отрезка, большй из которых равен полусумме оснований, а меньший - их полуразности.
Значит АН=(10-4):2=3 см. В прямоугольном треугольнике АВН катет АН равен половине гипотенузы АВ, следовательно, угол, против которого лежит этот катет (<ABH), равен 30° (свойство).
В прямоугольном треугольнике сумма острых углов равна 90°, значит
<A=90°-30°=60°.
Углы трапеции, прилежащие к боковой стороне, в сумме равны 180°.
Значит угол В=180°-60°=120°.
Так как трапеция равнобедренная, углы при основаниях равны.
ответ: <A=<D=60°, <B=<C=120°.
Проведем СР||АВ
Противоположные стороны четырехугольника АВСР параллельны.
АВСР - параллелограмм, ВС=АР=4 см, и СР=АВ=6 см
РД=АД-АР=10-4=6 см
Все стороны треугольника РСД равны.
Треугольник РСД - равносторонний.
Все углы равностороннего треугольника равны 60°.
∠ ВСР=∠ВАР=60°
∠ВСД=СВА=60°+60°=120°
Углы при каждом из оснований равнобедренной трапеции равны.
Острые углы данной трапеции равны 60°, тупые - 120°.