Трапеция описанная, следовательно её биссектрисы пересекаются в одной точке (центр вписанной окружности). Трапеция вписанная, следовательно равнобедренная, углы при основании равны. Значит равны их половины, биссектрисы углов при основании образуют равнобедренный треугольник. Перпендикуляр из центра вписанной окружности к основанию (радиус) является медианой.
Биссектрисы внутренних углов при параллельных пересекаются под прямым углом. Радиус в точку касания на боковой стороне - высота из прямого угла, она равна среднему пропорциональному проекций катетов. Отрезки касательных из одной точки равны, проекции катетов равны половинам оснований. Радиус равен половине высоты. Таким образом h=√(ab)
Трапеция описанная, следовательно её биссектрисы пересекаются в одной точке (центр вписанной окружности). Трапеция вписанная, следовательно равнобедренная, углы при основании равны. Значит равны их половины, биссектрисы углов при основании образуют равнобедренный треугольник. Перпендикуляр из центра вписанной окружности к основанию (радиус) является медианой.
Биссектрисы внутренних углов при параллельных пересекаются под прямым углом. Радиус в точку касания на боковой стороне - высота из прямого угла, она равна среднему пропорциональному проекций катетов. Отрезки касательных из одной точки равны, проекции катетов равны половинам оснований. Радиус равен половине высоты. Таким образом h=√(ab)
1. Sкр = πR²
S = π · 3,1² = 9,61π см²
2. С = 2πR
C = 2π · 0,4 = 0,8π м
3. R = 2,5 см
Длина окружности:
С = 2πR
C = 2π · 2,5 = 5π см
Сторона треугольника:
a = R√3 = 2,5 · √3 = 5√3/2 см
Периметр треугольника:
Р = 3а = 3 · 5√3/2 = 15√3/2 см
Площадь треугольника:
S = a²√3/4 = (5√3/2)² · √3 / 4 = 75√3/16 см²
4. Sсект = πR² · α/360°
Sсект = π · 5² · 60°/360° = 25π/6 см²
5. Сторона правильного шестиугольника:
а₆ = Р / 6 = 12 / 6 = 2 см
Сторона правильного шестиугольника равна радиусу описанной около него окружности:
R = a₆ = 2 см
Эта же окружность вписана в квадрат. Радиус вписанной в квадрат окружности равен половине стороны квадрата:
R = a₄ / 2
a₄ = 2R = 4 см