1) CB = AB = 8, AC = 8, <A = <C = 30 <B = 120
2) 400 * sin113 * sin53 / sin14
3) AC =
<A = Arccos( (AC^2 + AB^2 -BC^2)/2AC*AB )
<B = Arccos( (BC^2 + AB^2 -AC^2)/2BC*AB )
Если нужно найти приближенное целочисленное значение нужно подставить и посчитать на калькуляторе
Объяснение:
1) <C = 180-120-30 = 30 значит треугольник ABC равнобедренный с основанием AC. CB = AB = 8. Пусть BD высота, она же медиана.
<DBA = 120 / 2 = 60. AD = AB * sin<DBA = 8* /2 = 4
AC = 2AD = 8
2) BC = AC * sinA / sinB
S = AC * BC * sinC / 2 = 20* 20 * sin113 * sin53 / sin14
так как все стороный найдены можно подставить их значения в формулы:
Дано:
ABCDLMA₁B₁C₁D₁FK - правильная шестиугольная призма
AA₁D₁D - прямоугольник
S(AA₁D₁D) = 4 м²
MB = 2 м
-----------------------------------------------------------------------------------------
Найти:
V - ?
Наибольшее диагональное сечение — это AA₁D₁D. Тогда AD — диаметр окружности, описанной около правильного шестиугольника. Так что AD=2R и АВ=АМ=R. ∠MAB найдем по формуле:
∠MAB = 180°×(n-2)/n = 180°×(6-2)/6 = 180°×4/6 = 30°×4 = 120°
Тогда: ∠MAX = 1/2 × ∠MAB = 1/2 × 120° = 60° ⇒ MX = 1/2 × MB = 1/2 × 2 м = 1 м
Далее, мы находим сторону AX из прямоугольного ΔАМХ:
AM = MX/sin∠MAX = 1 м/sin 60° = 1 м/√3/2 = 1 м × 2/√3 = 2/√3 м × √3/√3 = 2√3/3 м ⇒ R = AM = 2√3/3 м
Значит что сторона AD будет равен:
AD = 2R = 2 × 2√3/3 м = 4√3/3 м
Теперь находим высоту AA₁ с формулы прямоугольника AA₁D₁D:
S(AA₁D₁D) = AA₁ × AD - площадь прямоугольника
4м² = AA₁ × 4√3/3 м ⇒ AA₁ = 4м²/4√3/3 м = 4×3/4√3 м = 12/4√3 м × √3/√3 = 12√3/4×(√3)² м = 12√3/4×3 м = 12√3/12 м = √3 м
Далее, мы находим площадь основания правильной шестиугольной призмы, мы знаем площадь основания равна площади шести равносторонних, то есть:
Sосн = 6S(ΔAMO) = 6×1/2×MO×AO×sin 60° = 6×1/2×(2√3/3 м)² × √3/2 = 3 × 12/9 м² × √3/2 = 3 × 4/3 м² × √3/2 = 4 м² × √3/2 = 2√3 м²
И теперь находим объем правильной шестиугольной призмы:
V = Sосн × h = Sосн × AA₁ = 2√3 м² × √3 м = 2×(√3)² м³ = 2×3 м³ = 6 м³
ответ: V = 6 м³
P.S. Рисунок показан внизу↓
1) CB = AB = 8, AC = 8, <A = <C = 30 <B = 120
2) 400 * sin113 * sin53 / sin14
3) AC =
<A = Arccos( (AC^2 + AB^2 -BC^2)/2AC*AB )
<B = Arccos( (BC^2 + AB^2 -AC^2)/2BC*AB )
Если нужно найти приближенное целочисленное значение нужно подставить и посчитать на калькуляторе
Объяснение:
1) <C = 180-120-30 = 30 значит треугольник ABC равнобедренный с основанием AC. CB = AB = 8. Пусть BD высота, она же медиана.
<DBA = 120 / 2 = 60. AD = AB * sin<DBA = 8* /2 = 4
AC = 2AD = 8
2) BC = AC * sinA / sinB
S = AC * BC * sinC / 2 = 20* 20 * sin113 * sin53 / sin14
3) AC =
так как все стороный найдены можно подставить их значения в формулы:
<A = Arccos( (AC^2 + AB^2 -BC^2)/2AC*AB )
<B = Arccos( (BC^2 + AB^2 -AC^2)/2BC*AB )
Если нужно найти приближенное целочисленное значение нужно подставить и посчитать на калькуляторе
Дано:
ABCDLMA₁B₁C₁D₁FK - правильная шестиугольная призма
AA₁D₁D - прямоугольник
S(AA₁D₁D) = 4 м²
MB = 2 м
-----------------------------------------------------------------------------------------
Найти:
V - ?
Наибольшее диагональное сечение — это AA₁D₁D. Тогда AD — диаметр окружности, описанной около правильного шестиугольника. Так что AD=2R и АВ=АМ=R. ∠MAB найдем по формуле:
∠MAB = 180°×(n-2)/n = 180°×(6-2)/6 = 180°×4/6 = 30°×4 = 120°
Тогда: ∠MAX = 1/2 × ∠MAB = 1/2 × 120° = 60° ⇒ MX = 1/2 × MB = 1/2 × 2 м = 1 м
Далее, мы находим сторону AX из прямоугольного ΔАМХ:
AM = MX/sin∠MAX = 1 м/sin 60° = 1 м/√3/2 = 1 м × 2/√3 = 2/√3 м × √3/√3 = 2√3/3 м ⇒ R = AM = 2√3/3 м
Значит что сторона AD будет равен:
AD = 2R = 2 × 2√3/3 м = 4√3/3 м
Теперь находим высоту AA₁ с формулы прямоугольника AA₁D₁D:
S(AA₁D₁D) = AA₁ × AD - площадь прямоугольника
4м² = AA₁ × 4√3/3 м ⇒ AA₁ = 4м²/4√3/3 м = 4×3/4√3 м = 12/4√3 м × √3/√3 = 12√3/4×(√3)² м = 12√3/4×3 м = 12√3/12 м = √3 м
Далее, мы находим площадь основания правильной шестиугольной призмы, мы знаем площадь основания равна площади шести равносторонних, то есть:
Sосн = 6S(ΔAMO) = 6×1/2×MO×AO×sin 60° = 6×1/2×(2√3/3 м)² × √3/2 = 3 × 12/9 м² × √3/2 = 3 × 4/3 м² × √3/2 = 4 м² × √3/2 = 2√3 м²
И теперь находим объем правильной шестиугольной призмы:
V = Sосн × h = Sосн × AA₁ = 2√3 м² × √3 м = 2×(√3)² м³ = 2×3 м³ = 6 м³
ответ: V = 6 м³
P.S. Рисунок показан внизу↓