4* ( ). МА перпендикуляр до площинин квадрата ABCD. Доведіть, що кут МВС прямий. 5 (3 баав). Відрізок AB, який дорівнює 5 см, не має спільних точок з площиноюү. Прямі Ас і BD перпендикулярні до ті пере- тинають у в точках CiD. Знайдіть CD, якщо AC = 7 см; Вра 3 см. 6 ( ). Сторонн трикутника дорівнюють 4 см, 15 см і 13 см. Через вершину найменшого кута до площини трикутника про- ведено перпендикуляр, із його кінця, що не належить трикутнику, опущено перпендикуляр завдовжки 13 см на протилежну цьому куту сторону. Знайдіть довжину перпендикуляра, проведеного до площини трикутника.
ромб - параллелограмм, у кот.все стороны равныдиагонали ромба перпендикулярны и делятся точкой пересечения пополам (как и у любого параллелограмма)диагонали ромба - биссектрисы его угловромб ABCD AB=BC... AB=BD => треугольник ABD - равностороннийв равностороннем треугольнике все стороны и все углы равны => BAD = 180/3=60 = BDA = DBABD - биссектриса CDA => CDA = 2BDA = 2*60 = 120BAD = BCD, CDA = CBA (т.к. ромб - это параллелограмм)вторая диагональ AC = AO + OCиз ABO (AB=10, BO=5) по т.Пифагора AO = корень(10*10-5*5) = корень(100-25) = корень(75) = корень(25*3) = 5*корень(3)
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
меньший катет АС=6см, больший катет ВС=12√3 см
Объяснение:
обозначим вершины треугольника А В С с прямым углом С катетами АС и ВС и гипотенузой АВ. Проекции катетов на гипотенузу образует высота СН проведённая из вершины прямого угла, поэтому СН перпендикулярно АВ. СН также делит ∆АВС на 2 прямоугольных треугольника АСН и СВН в которых АН, ВН, СН - катеты, а АС и ВС - гипотенузы. Он подобны между собой, так как высота проведённая из вершины прямого угла делит его на прямоугольные треугольники подобные между собой и каждый из них подобен ∆АВС. АВ=АН+ВН=6+18=24 см. Рассмотрим ∆АСН и ∆АВС. В ∆АСН АС является гипотенузой, а в ∆АВС - гипотенуза АВ, поэтому гипотенуза АС~ гипотенузе АВ. А также меньший катет ∆АСН АН~ АС(меньшему катету ∆АВС:
теперь подставим наши значения в эту пропорцию:
перемножим числитель и знаменатель соседних дробей между собой крест накрест и получим:
АС ²=6×24=144
АС=√144=12см
Теперь найдём катет ВС по теореме Пифагора:
ВС²=АВ²–АС²=24²–12²=576–144=432=12√3см