4. Позначте точки A i B, які лежать в різних пiвплощинах відносно прямої а.Через точку А за до кутника і лінійки проведіть пряму,яка паралельна прямій а. Через точку В за до кутника проведіть прямус,яка перпендикулярна до прямої а.
Отрезки касательных, проведенных к окружности равны. Пусть дан тр-к АВС, т. касания стороны ВС с окружностью т.Д; стороны АС - т.Е; стороны АВ - т.К; по условию АС=29 см; ВД=1 см; ДС=24 см; рассм. т.С, из нее проведены касательные к окружности СД и СЕ, они равны 24 см; АС=29 см; значит АЕ=29-24=5 см; рассм. касательные, проведенные к окружности из т.А - АЕ=АК=5 см; рассм. касательные, проведенные из т.В - ВК=ВД=1см; отсюда АВ=АК+ВК=5+1=6 см; СВ=24+1=25 см; и АС=29 см; значит Р=6+25+29=60см - это ответ.
Пусть M1, M2, M3 – образы точки M при последовательных отражениях. Три из четырёх проделанных преобразований (симметрии относительно прямой AB, прямой AC и точки A) не меняют расстояния до точки A. Поскольку точка M осталась на месте, то и симметрия относительно BC не изменила расстояния до точки A. Значит одна из точек Mi лежит на прямой BC. Последовательные отражения относительно AC и AB есть поворот на 2 ∠ BAC, а отражение относительно точки A – поворот на 180 . Значит, композиция всех этих преобразований является поворотом точки M на 2 ∠ BAC + 180 . Так как M осталось неподвижна, то 2 α + 180 делится на 2 π . Значит, ∠ BAC = 90 .
Пусть дан тр-к АВС, т. касания стороны ВС с окружностью т.Д;
стороны АС - т.Е; стороны АВ - т.К; по условию АС=29 см; ВД=1 см;
ДС=24 см;
рассм. т.С, из нее проведены касательные к окружности СД и СЕ, они равны 24 см; АС=29 см; значит АЕ=29-24=5 см;
рассм. касательные, проведенные к окружности из т.А - АЕ=АК=5 см;
рассм. касательные, проведенные из т.В - ВК=ВД=1см;
отсюда АВ=АК+ВК=5+1=6 см; СВ=24+1=25 см; и АС=29 см; значит
Р=6+25+29=60см - это ответ.