Відповідь:
Пояснення:
3)
Гипотенуза прямоугольного триугольника равна диаметру описаной окружности NM=2×OM=26
Из теореми Пифагора KN^2=NM^2-KM^2= 676-576 =100 → KN=10
P=10+26+24=60
52)
P=2×40=80 из свойст описаной окружности в четирехугольник, сумми противоположних сторон равни
54) сумма противоположних углов равна 180°
/_N=180-75=105°
/_М=180-53=127° (качество фото не очень, если ошиблась в углах, подставь правильний)
16)
По теореме Пифагора
20^2=(8+r)^2+(12+r)^2
400=64+16r+r^2+144+24r+r^2
400=208+2r^2+40r
2r^2+40r-192=0
r^2+20-96=0
r= -10± 14
Так как значение радиуса >0, то
r=4
Центр вписанной окружности треугольника - точка пересечения биссектрис.
В равностороннем треугольнике все биссектрисы являются также высотами и медианами.
h =a*sin60 =√3/2 a
Медианы треугольника делятся точкой пересечения в отношении 2:1 от вершины.
r =1/3 h =√3/6 a
a =6/√3 r =6/√3 *4√3 =24
Или
Точка пересечения биссектрис - центр вписанной окружности (O).
OH=4√3 (радиус), AC=2AH
В треугольнике (AOH) с углами 30, 90 стороны относятся как 1 :√3 :2
(катет против угла 30 равен половине гипотенузы, далее по теореме Пифагора)
AH=OH*√3 => AC=OH*2√3 =4√3 *2√3 =24
Відповідь:
Пояснення:
3)
Гипотенуза прямоугольного триугольника равна диаметру описаной окружности NM=2×OM=26
Из теореми Пифагора KN^2=NM^2-KM^2= 676-576 =100 → KN=10
P=10+26+24=60
52)
P=2×40=80 из свойст описаной окружности в четирехугольник, сумми противоположних сторон равни
54) сумма противоположних углов равна 180°
/_N=180-75=105°
/_М=180-53=127° (качество фото не очень, если ошиблась в углах, подставь правильний)
16)
По теореме Пифагора
20^2=(8+r)^2+(12+r)^2
400=64+16r+r^2+144+24r+r^2
400=208+2r^2+40r
2r^2+40r-192=0
r^2+20-96=0
r= -10± 14
Так как значение радиуса >0, то
r=4
Центр вписанной окружности треугольника - точка пересечения биссектрис.
В равностороннем треугольнике все биссектрисы являются также высотами и медианами.
h =a*sin60 =√3/2 a
Медианы треугольника делятся точкой пересечения в отношении 2:1 от вершины.
r =1/3 h =√3/6 a
a =6/√3 r =6/√3 *4√3 =24
Или
Точка пересечения биссектрис - центр вписанной окружности (O).
В равностороннем треугольнике все биссектрисы являются также высотами и медианами.
OH=4√3 (радиус), AC=2AH
В треугольнике (AOH) с углами 30, 90 стороны относятся как 1 :√3 :2
(катет против угла 30 равен половине гипотенузы, далее по теореме Пифагора)
AH=OH*√3 => AC=OH*2√3 =4√3 *2√3 =24