4) Составить уравнение эллипса, фокусы которого лежат на оси абсцисс симметрично относительно начала координат, зная, что эллипс проходит через точки М1 (2, 1) и М2 (3, 1/2). Найти эксцентриситет эллипса. 5) Дана гипербола 3х^2-y^2-3=0. Окружность с центром в начале координат, проходящая через фокусы этой гиперболы, пересекает гиперболу в четырех точках. Найти площадь прямоугольника в вершинах этих точек.
6) Дана парабола y^2-8x=0. Составить уравнение касательной к параболе: а) проходящей через точку М (2, 4); б) к параллельной прямой y-2х.
Составить уравнения касательных к параболе, проведенных из точки N(-1; 1).
Доказано, отметьте ответ как лучший
Объяснение:
1. <A = <C = 70° ( внутренние противолежащие углы в параллелограмме равны )
AB = CD, AD = BC, <A = <C
∆ABD = ∆BCD ( по свойству СУС, сторона угол сторона)
2. а) <CAD = <CAB, AD = AB, AC - общая сторона
∆ADC = ∆ABC (СУС)
б) BC = DC (из предыдущего доказательства)
тогда ∆CBD - равнобедренный, тогда CF - высота, биссектриса и медиана (свойство равнобедренного треугольника)
тогда <FCB = <FCD
FC - общая сторона
∆BFC = ∆DFC (СУС)
3. AB = BC (по условию)
тогда ∆ABC - равнобедренный, и BO - биссектриса
=> <ABO = <CBO
BO - общая сторона
=> ∆ABO = ∆CBO
тогда AO = CO
а угол AOE = углу COE = 90°
сторона OE - общая
тогда ∆AOE = ∆COE (сторона угол сторона)
надеюсь и заслуживаю лайк
Доказательство: АК = СМ, т. к. в равнобедренном тр-ке биссектрисы, проведенные к боковым сторонам равны (по теореме);
Четырехугольник АМКС, где СМ и АК - диагонали, Δ АОС равнобедренный , <ОАС = <МАО = <АСО = <КСО = х;
<АОС = <МОС = 180 - х - х = 180 - 2х.
ΔМОК - равнобедренный.
Т.к. АК = МС и АО = ОС , то ОМ = ОК, <ОМК = <ОКМ = (180 - <МОК)/2 = 180 - (180 - 2х)/2 = х, т.е <ОМК = <АСО и <ОАС = <ОКМ.
Если при пересечении двух прямых третьей внутренние разносторонние углы равны, то прямые параллельны (признаки параллельности прямых