Прямоугольник здесь дан как фигура вс указывающая на то, что трапеция АВСD - прямоугольная, т.к. имеет с прямоугольником общую сторону АВ. ВN- биссектриса, углы АВN и ТВN - равны, а ТВN и АNВ - равны как накрестлежащие, и потому треугольник ВАН- равнобедренный. Сторона АN=АВ=8 S (ABT)=AB*BT:2=6*8:2=24 В трапеции образованные диагоналями треугольники при боковых сторонах - равновелики, при основаниях - подобны. S (АВР)=S (PTN) ------- Рассмотрим треугольник АВТ. Он египетский (отношение катетов 3:4), значит, AT=10 ( можно проверить по т.Пифагора) Высоту ВН найдем из площади треугольника АВТ: S (ABT)=BH*AT:2 ВН= 2 S ABT:AT=48:10=4,8 ------ Рассмотрим треугольники ВРТ и АРN. Они подобны по первому признаку подобия - имеют равные вертикальные углы при Р и равные накрестлежащие углы при секущих ВN и АТ. Коэффициент подобия равен ВТ:АN= 6:8=3/4 АТ=ТР+РА= 3+4=7 частей 1 часть =10/7 АР=4 части=АТ*4/7 АР=10:7*4 S ABP=AP*BH:2= (40/7)*4,8:2=96:7=13 ⁵/₇ В трапеции образованные диагоналями треугольники при боковых сторонах - равновелики S PTN=S ABP=13 ⁵/₇
AOD и BOC - равнобедренные прямоугольные треугольники с известными гипотенузами. Отсюда легко видеть, что AO = OD = 20√2; BO = OC = 15√2; Треугольник COD прямоугольный с известными катетами, откуда легко найти и CD = 25√2; Это просто египетский треугольник 3,4,5, коэффициент подобия 5√2. (ВНИМАНИЕ! - читать внимательно). Поскольку равнобедренная трапеция может быть вписана в окружность, OM является медианой треугольника AOB; Строится описанная окружность. ∠MOA = ∠KOC; ∠COK = ∠DOC; (стороны углов перпендикулярны) ∠BAO = ∠ODC; (вписанные углы, оба опираются на дугу CB) => ΔMAO - равнобедренный; углы при стороне AO равны, => AM = MO; На гипотенузе прямоугольного ΔABO есть только одна точка, равноудаленная от вершины прямого угла и вершины острого - её середина => OM - медиана треугольника AOB; Поэтому надо найти сумму длин высоты и медианы к гипотенузе в египетском треугольнике с коэффициентом подобия 5√2; высота треугольника 3,4,5 равна 3*4/5 = 2,4; медиана 2,5; в сумме 4,9 и остается умножить на 5√2; ответ 49√2/2;
ВN- биссектриса, углы АВN и ТВN - равны, а ТВN и АNВ - равны как накрестлежащие, и потому треугольник ВАН- равнобедренный.
Сторона АN=АВ=8
S (ABT)=AB*BT:2=6*8:2=24
В трапеции образованные диагоналями треугольники при боковых сторонах - равновелики, при основаниях - подобны.
S (АВР)=S (PTN)
-------
Рассмотрим треугольник АВТ. Он египетский (отношение катетов 3:4), значит, AT=10 ( можно проверить по т.Пифагора)
Высоту ВН найдем из площади треугольника АВТ:
S (ABT)=BH*AT:2
ВН= 2 S ABT:AT=48:10=4,8
------
Рассмотрим треугольники ВРТ и АРN.
Они подобны по первому признаку подобия - имеют равные вертикальные углы при Р и равные накрестлежащие углы при секущих ВN и АТ. Коэффициент подобия равен ВТ:АN= 6:8=3/4
АТ=ТР+РА= 3+4=7 частей
1 часть =10/7
АР=4 части=АТ*4/7
АР=10:7*4
S ABP=AP*BH:2= (40/7)*4,8:2=96:7=13 ⁵/₇
В трапеции образованные диагоналями треугольники при боковых сторонах - равновелики
S PTN=S ABP=13 ⁵/₇
Треугольник COD прямоугольный с известными катетами, откуда легко найти и CD = 25√2;
Это просто египетский треугольник 3,4,5, коэффициент подобия 5√2.
(ВНИМАНИЕ! - читать внимательно).
Поскольку равнобедренная трапеция может быть вписана в окружность, OM является медианой треугольника AOB;
Строится описанная окружность.
∠MOA = ∠KOC;
∠COK = ∠DOC; (стороны углов перпендикулярны)
∠BAO = ∠ODC; (вписанные углы, оба опираются на дугу CB)
=> ΔMAO - равнобедренный; углы при стороне AO равны,
=> AM = MO;
На гипотенузе прямоугольного ΔABO есть только одна точка, равноудаленная от вершины прямого угла и вершины острого - её середина => OM - медиана треугольника AOB;
Поэтому надо найти сумму длин высоты и медианы к гипотенузе в египетском треугольнике с коэффициентом подобия 5√2;
высота треугольника 3,4,5 равна 3*4/5 = 2,4; медиана 2,5; в сумме 4,9 и остается умножить на 5√2;
ответ 49√2/2;