Чертим пирамиду, диагонали основания (АС) и (ВС), высотупирамиды (SO). О-точка пересечения (АС) и (ВС) и центр квадрата АВСD. треугольник ASC равен треугольнику АВС по трем сторонам. Значит треугольник ASC прямоугольный равнобедренный. АС=sqrt(2), АО=ОС=OS=sqrt(2)/2.
Все боковые грани пирамиды равносторонние треугольники со стороной 1. Апофемы пирамиды равны высртами этих треугольников и равны sqrt(3)/2. Проведём сечение через вершину пирамиды S и середины рёбер AD (точка М) и ВС (точка N). Угол между АВ и плоскостью SAD равен углу между AB и SM, значит равекн углу между SM и NM или углу SMO.
Из треугольника SOM получаем : cos(SMO)=(1/2)/sqrt(3)/2=1/sqrt(3)/3
task/29635078 Дан параллелограмм ABCD , F – точка пересечения диагоналей , О – произвольная точка пространства. Доказать: 1) (OA) ⃗+(OC) ⃗=(OB) ⃗+ (OD) ⃗ ; 2) (OF) ⃗=1/4((OA) ⃗+(OB) ⃗+(OC) ⃗+(OD) ⃗) .
Решение : Если векторы исходят из одной точки , то вектор суммы исходит из общей начальной точки векторов и является диагональю параллелограмма, сторонами которого являются данные векторы . * * * ( Сумма векторов , правило параллелограмма ) * * *
Чертим пирамиду, диагонали основания (АС) и (ВС), высотупирамиды (SO). О-точка пересечения (АС) и (ВС) и центр квадрата АВСD. треугольник ASC равен треугольнику АВС по трем сторонам. Значит треугольник ASC прямоугольный равнобедренный. АС=sqrt(2), АО=ОС=OS=sqrt(2)/2.
Все боковые грани пирамиды равносторонние треугольники со стороной 1. Апофемы пирамиды равны высртами этих треугольников и равны sqrt(3)/2. Проведём сечение через вершину пирамиды S и середины рёбер AD (точка М) и ВС (точка N). Угол между АВ и плоскостью SAD равен углу между AB и SM, значит равекн углу между SM и NM или углу SMO.
Из треугольника SOM получаем : cos(SMO)=(1/2)/sqrt(3)/2=1/sqrt(3)/3
task/29635078 Дан параллелограмм ABCD , F – точка пересечения диагоналей , О – произвольная точка пространства. Доказать: 1) (OA) ⃗+(OC) ⃗=(OB) ⃗+ (OD) ⃗ ; 2) (OF) ⃗=1/4((OA) ⃗+(OB) ⃗+(OC) ⃗+(OD) ⃗) .
Решение : Если векторы исходят из одной точки , то вектор суммы исходит из общей начальной точки векторов и является диагональю параллелограмма, сторонами которого являются данные векторы . * * * ( Сумма векторов , правило параллелограмма ) * * *
1) (OA) ⃗+ (OC) ⃗ =2*(OF) ⃗ и (OB) ⃗+(OD) ⃗ = 2*(OF) ⃗
значит (OA) ⃗+ (OC) ⃗ = (OB) ⃗+(OD) ⃗
2) (1/4) * [ (OA) ⃗+(OB) ⃗+ (OC) ⃗+(OD) ⃗] =
(1/4) * [ (OA) ⃗+ (OC) ⃗+(OB) ⃗+(OD) ⃗] =
(1/4) * [ 2*(OF) ⃗+2*(OF) ] =
(1/4) * 4*(OF) ⃗ = (OF) ⃗ .