4. Выпишите примеры (буквы ответов) настии и тропизмов из перечня. (a) Рост корня растения к центру Земли. (b) Движение подсолнечника - поворот за
солнцем.
(c) Складывание листьев мимозы стыдливой при прикосновении. (d) Движение водорослей
на свет.
1. Настии 2. Тропизмы
Если боковые реба пирамиды наклонены к плоскости основания под равными углами, то вокруг основания можно описать окружность, и основание высоты пирамиды находится в центре этой окружности.
Центр О описанной вокруг прямоугольного треугольника окружности лежит в середине его гипотенузы.
Катет ВС=10, противолежит углу 30°, след. гипотенуза
АВ=2*10=20
Площадь боковой поверхности пирамиды - сумма площадей его граней,
площадь каждой из них найдем по формуле
S=ah.
Для грани, основанием которой является гипотенуза, высота равна 5.
S Δ ADB=DO*AB:2=5*20:2=50
Для треугольника CDB высота
DK²=DO²+OK²
ОК=АС:2
АС=АВ*sin (60)=10√3
ОК=5√3
DK=√(25+ 75)=10
S ΔCDB=10*10:2=50
Для АDC высота
DM²=DO²+OM²=√50=5√2
S ADC=AC*DM:2=25√6
Площадь боковой поверхности пирамиды
Sбок DАВС=S ADB+SCDB+S ADC=100+25√6
Пусть в трапеции ABCD AD, BC - основания, а диагонали пересекаются в точке O. В треугольнике AOD проведем высоту OH. Так как трапеция равнобедренная, AO=DO, и в прямоугольном треугольнике AOD острые углы равны 45 градусам. Тогда в прямоугольном треугольнике AOH один из углов равен 45 градусам, тогда и второй угол равен 45 градусам, тогда катеты равны, AH=OH. Аналогично проведем высоту OM в треугольнике BOC, получим, что BM=MO (треугольник BMO прямоугольный и равнобедренный). Тогда высота трапеции - HM - равна AH+BM - полусумме оснований - средней линии. Площадь равна произведению средней линии на высоту, тогда она равна 6*6=36.