4.Высота бака цилиндрической формы равна 20 см, а площадь его основания 150 кв. см. Чему равен объем этого бака в литрах?
5.Даны две кружки цилиндрической формы. Первая кружка вдвое выше второй, а вторая в четыре раза шире первой. Во сколько раз объем второй кружки больше объема первой?
7.В цилиндрическом сосуде уровень жидкости достигает 27 см. На какой высоте будет находиться уровень жидкости, если ее перелить во второй сосуд, диаметр которого в 3 раза больше первого? (в см)
8.В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 16 см. На какой высоте будет находиться уровень воды, если ее перелить в сосуд такой же формы, но сторона основания в 4 раза больше, чем у первого? (в см)
50
Объяснение:
1) Так как все двугранные углы данного многогранника прямые, то он является прямой призмой, и все его боковые грани являются прямоугольниками.
Площадь поверхности S прямой призмы равна сумме площадей её оснований S осн и боковой поверхности S бок:
S = S осн + S бок
2) Так как все углы верхнего основания прямые, то его площадь равна разности площадей прямоугольника с размерами 3 х 2 (3 в длину, 2 в ширину) и углового выреза с размерами 1 х 1 (1 в длину, 1 в ширину):
3 · 2 - 1 · 1 = 6 - 1 = 5
А так как нижнее основание в прямой призме равно верхнему основанию, то площадь нижнего основания также равна 5, а площадь двух оснований равна:
S осн = 5 · 2 = 10
3) Площадь боковой поверхности прямой призмы S бок равна произведению периметра её основания P на высоту Н, которая в прямой призме равна длине бокового ребра (согласно рисунку, боковое ребро равно 4, следовательно, высота Н =4):
S бок = Р · H
Р = 3 + 2 + (3-1) + 1 + 1 + (2-1) = 10
S бок = Р · H = 10 · 4 = 40
4) Площадь поверхности многогранника, изображенного на
рисунке:
S = S осн + S бок = 10 + 40 = 50
ответ: площадь поверхности многогранника, изображенного на
рисунке, равна 50.
40
Объяснение:
Решение
1) Так как все двугранные углы прямые, то данная фигура является прямой призмой.
Прямая призма - это призма, в которой все боковые грани перпендикулярны к основанию, а высота равна длине бокового ребра.
2) Объём V прямой призмы равен произведению площади S её основания на высоту h:
V = S ⋅ h
Согласно рисунку высота (длина бокового ребра) равна 4:
h = 4
3) Чтобы найти площадь основания, необходимо от площади, рассчитанной по наружным точкам, то есть площади прямоугольника со сторонами 4 в длину и 3 в ширину, отнять площадь впадины, имеющей форму прямоугольника со сторонами 2 в длину и 3-1-1 = 1 в ширину:
S = 4 · 3 - 2·1 = 12 - 2 = 10
4) Находим объём:
V = S ⋅ h = 10 · 4 = 40
ответ: объём многогранника, изображённого на рисунке, равен 40.