От всех сторон треугольника равноудалена точка пересечения его биссектрис, т.е. центр вписанной окружности.
Вершиной угла, под которым видна гипотенуза ( она - длинная сторона прямоугольного треугольника), является центр вписанной окружности, а его величина - разность между суммой углов треугольника и полусуммой его острых углов
∠АDВ=180°-0,5•(38°+52°)=135°
Заметим, что тупой угол, образованный биссектрисами острых углов прямоугольного треугольника всегда равен 135°, так как их сумма 90°, а полусумма -– 45°
1) В правильном шестиугольнике все стороны равны.
P₆ = 6a₆,
где а₆ - сторона шестиугольника.
6а₆ = 48
а₆ = 8 м
Радиус окружности, описанной около правильного шестиугольника, равен его стороне:
R = a₆ = 6 м
Эта же окружность описана около квадрата.
Радиус окружности, описанной около квадрата:
R = a₄√2 / 2
6 = a₄ √2 / 2
a₄ = 12 / √2 = 6√2 м
2) Шестиугольник диагоналями делится на 6 равных равносторонних треугольников, так как центральный угол его равен 360°/6 = 60°.
Площадь одного треугольника:
S = a²√3/4 = 72√3 / 6
a²√3/4 = 12√3
a² = 48
a = 4√3 см - сторона шестиугольника.
Радиус окружности, описанной около правильного шестиугольника, равен его стороне:
R = a = 4√3 см
Длина окружности:
C = 2πR = 2π · 4√3 = 8π√3 см
От всех сторон треугольника равноудалена точка пересечения его биссектрис, т.е. центр вписанной окружности.
Вершиной угла, под которым видна гипотенуза ( она - длинная сторона прямоугольного треугольника), является центр вписанной окружности, а его величина - разность между суммой углов треугольника и полусуммой его острых углов
∠АDВ=180°-0,5•(38°+52°)=135°
Заметим, что тупой угол, образованный биссектрисами острых углов прямоугольного треугольника всегда равен 135°, так как их сумма 90°, а полусумма -– 45°