У равнобедренного Δ две стороны равны. 234 - 104 = 130 - это сумма двух равных сторон 130 : 2 = 65 - это одна из равных сторон. Из вершины Δ, противолежащей основанию, опустим высоту на основание Получим 2 равных прямоугольных треугольника. Рассмотрим один из них. Высота в равнобедренном Δ является медианой, поэтому высота разделит основание пополам 104 : 2 = 52 - это катет рассматриваемого прямоугольного Δ. Гипотенуза = боковой стороне = 65 По теореме Пифагора определим другой катет рассматриваемого прямоугольного Δ Катет = √(65^2 - 52^2) = 39 - это высота равнобедренного Δ S равнобедренного Δ = 1/2 *39 * 104 = 2028 (кв.ед.) ответ: 2028 кв.ед - площадь равнобедренного Δ.
Треугольники подобны с коэффициентом подобия 4/3 по второму признаку подобия: "Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то такие треугольники подобны". Из подобия: а) АВ/(АВ-5)=4/3, отсюда 3АВ=4АВ-20 и АВ=20. Значит А1В1=15. ответ: АП=20см, АВ1=15см. б) АВ/(АВ-6)=4/3, отсюда 3АВ=4АВ-24 и АВ=24. Значит А1В1=18. ответ: АП=24см, АВ1=18см. в) Площади подобных треугольников относятся как квадрат коэффициента подобия. то есть S1/S2=16/9, а S1+S2=400 или S2=400-S1. Тогда S1/(400-S1)=16/9, отсюда 9S1=16*400-16S1 или 25S1=6400ю. S1=256см², а S2=400-256=144см². ответ: Sabc=256см² Sa1b1c1=144см²
234 - 104 = 130 - это сумма двух равных сторон
130 : 2 = 65 - это одна из равных сторон.
Из вершины Δ, противолежащей основанию, опустим высоту на основание
Получим 2 равных прямоугольных треугольника. Рассмотрим один из них.
Высота в равнобедренном Δ является медианой, поэтому высота разделит основание пополам
104 : 2 = 52 - это катет рассматриваемого прямоугольного Δ.
Гипотенуза = боковой стороне = 65
По теореме Пифагора определим другой катет рассматриваемого прямоугольного Δ
Катет = √(65^2 - 52^2) = 39 - это высота равнобедренного Δ
S равнобедренного Δ = 1/2 *39 * 104 = 2028 (кв.ед.)
ответ: 2028 кв.ед - площадь равнобедренного Δ.
Из подобия:
а) АВ/(АВ-5)=4/3, отсюда 3АВ=4АВ-20 и АВ=20. Значит А1В1=15.
ответ: АП=20см, АВ1=15см.
б) АВ/(АВ-6)=4/3, отсюда 3АВ=4АВ-24 и АВ=24. Значит А1В1=18.
ответ: АП=24см, АВ1=18см.
в) Площади подобных треугольников относятся как квадрат коэффициента подобия. то есть S1/S2=16/9, а S1+S2=400 или S2=400-S1. Тогда S1/(400-S1)=16/9, отсюда
9S1=16*400-16S1 или 25S1=6400ю. S1=256см², а S2=400-256=144см².
ответ: Sabc=256см² Sa1b1c1=144см²