44. Углы АОВ, ВОС, СОD, DОЕ и ЕОА имеют общую вершину О. Прямая а, не проходяща через точку о. Пресекает не менее двух лучей, которые являются сторонами этих углов Рассмотрите все возможные случаи. Сделайте чертежи.
1. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Доказательство:
Пусть О - середина отрезка АВ. Проведем ОН⊥b и продлим его до пересечения с прямой а.
ΔОАК = ΔОВН по стороне и двум прилежащим к ней углам (АО = ОВ, так как О - середина АВ, углы при вершине О равны как вертикальные, ∠ОАК = ∠ОВН по условию - накрест лежащие), значит
∠ОКА = ∠ОНВ = 90°.
Два перпендикуляра к одной прямой параллельны, значит
а║b.
2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
3. Если при пересечении двух прямых секущей сумма односторонних углов 180°, то прямые параллельны.
Геометрия и живопись... Пути науки и искусства переплетались в них на протяжении столетий. Геометрия дарила живописи новые изобразительные возможности, обогащала язык живописи, а живопись эпохи Возрождения стимулировала исследования по геометрии, дала начало проективной геометрии. Сейчас нам предстоит взглянуть на геометрию с неожиданной, быть может, стороны. Мы увидим, что геометрия, будучи могучей ветвью древа математики, является в то же время и тем связующим стержнем, который проходит через всю историю живописи.
В самом деле, существуют три принципиальных геометрических метода отображения трехмерного пространства на двумерную плоскость картины: метод ортогональных проекций, аксонометрия и перспектива. Все эти принципиальные возможности изображения пространства на плоскости были реализованы в искусстве живописи, причем в разных пластах художественной культуры каждый из этих методов находил свое наиболее полное и чистое выражение. Так, система ортогональных проекций составила геометрическую основу живописи Древнего Египта; аксонометрия (параллельная перспектива) характерна для живописи средневекового Китая и Японии; обратная перспектива - для фресок и икон Византии и Древней Руси; прямая перспектива - это геометрический язык ренессансной живописи, а также станковой и монументальной живописи европейского искусства XVII века и русского искусства XVIII- XIX веков.
Признаки параллельности прямых.
1. Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
Доказательство:
Пусть О - середина отрезка АВ. Проведем ОН⊥b и продлим его до пересечения с прямой а.
ΔОАК = ΔОВН по стороне и двум прилежащим к ней углам (АО = ОВ, так как О - середина АВ, углы при вершине О равны как вертикальные, ∠ОАК = ∠ОВН по условию - накрест лежащие), значит
∠ОКА = ∠ОНВ = 90°.
Два перпендикуляра к одной прямой параллельны, значит
а║b.
2. Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.
3. Если при пересечении двух прямых секущей сумма односторонних углов 180°, то прямые параллельны.
Объяснение:
Геометрия и живопись... Пути науки и искусства переплетались в них на протяжении столетий. Геометрия дарила живописи новые изобразительные возможности, обогащала язык живописи, а живопись эпохи Возрождения стимулировала исследования по геометрии, дала начало проективной геометрии. Сейчас нам предстоит взглянуть на геометрию с неожиданной, быть может, стороны. Мы увидим, что геометрия, будучи могучей ветвью древа математики, является в то же время и тем связующим стержнем, который проходит через всю историю живописи.
В самом деле, существуют три принципиальных геометрических метода отображения трехмерного пространства на двумерную плоскость картины: метод ортогональных проекций, аксонометрия и перспектива. Все эти принципиальные возможности изображения пространства на плоскости были реализованы в искусстве живописи, причем в разных пластах художественной культуры каждый из этих методов находил свое наиболее полное и чистое выражение. Так, система ортогональных проекций составила геометрическую основу живописи Древнего Египта; аксонометрия (параллельная перспектива) характерна для живописи средневекового Китая и Японии; обратная перспектива - для фресок и икон Византии и Древней Руси; прямая перспектива - это геометрический язык ренессансной живописи, а также станковой и монументальной живописи европейского искусства XVII века и русского искусства XVIII- XIX веков.