В
Все
М
Математика
О
ОБЖ
У
Українська мова
Д
Другие предметы
Х
Химия
М
Музыка
Н
Немецкий язык
Б
Беларуская мова
Э
Экономика
Ф
Физика
Б
Биология
О
Окружающий мир
Р
Русский язык
У
Українська література
Ф
Французский язык
П
Психология
А
Алгебра
О
Обществознание
М
МХК
В
Видео-ответы
Г
География
П
Право
Г
Геометрия
А
Английский язык
И
Информатика
Қ
Қазақ тiлi
Л
Литература
И
История
Vanomasssss
Vanomasssss
21.08.2020 01:30 •  Геометрия

45б
вычислите значение cosα, если sinα=\frac{3}{5},0

Показать ответ
Ответ:

Вертикальные углы равны.

Сумма смежных углов равна 180 градусов.

 

Если 1 угол равен 30 градусам, то вертикальный с ним угол равен тоже 30 градусам,  смежный равен 150 градусам. Вертикальный смежному 150 градусов.

 

Дано:

пересекающиеся прямые.

угол 1=30 градусов

 

Найти: углы 2;3;4.

 

Решение: угол 3 = угол 1 = 30 градусов(вертикальные углы)

угол 2 = угол 4 = 180 градуов минус угол 1(смежные углы) = 180 градусов минус 30 градусов = 150 градусов

 

ответ: Угол 2= 150 гр.

           Угол 3= 30 гр.

           Угол 4 = 150 гр.

 

0,0(0 оценок)
Ответ:
Вопросик3432
Вопросик3432
20.09.2020 05:36

1) В треугольниках ΔAA₁B и ΔСС₁B углы ∠A₁ и ∠C₁ — прямые, угол ∠B — общий. Значит, углы ∠A₁AB и ∠С₁CB (∠LCB) равны (так как все углы каждого треугольника должны в сумме давать 180°).

Углы ∠LAB и ∠LCB опираются на одну дугу, значит, они равны.

∠A₁AB = ∠LCB, ∠LCB = ∠LAB ⇒ ∠A₁AB = ∠LAB. Тогда прямоугольные треугольники ΔAC₁H и ΔAC₁L равны по общему катету AC₁ и прилежащему к нему углу (∠A₁AB = ∠LAB). Значит, их соответствующие элементы равны, в частности, HC₁ = C₁L, что и требовалось доказать.

2) AM = MC, HM = MK по условию ⇒ AKCH — параллелограмм ⇒ ∠AKC = ∠AHC. ∠AHC = ∠A₁HC₁ как вертикальные ⇒ ∠AKC = ∠A₁HC₁.

∠BA₁H = ∠BC₁H = 90° (в сумме дают 180°) и опираются на один отрезок (лежат по разные стороны этого отрезка). Значит, около четырёхугольника A₁BC₁H можно описать окружность. Но тогда ∠A₁HC₁ = 180° - ∠A₁BC₁. А поскольку ∠AKC = ∠A₁HC₁, то ∠AKC = 180° - ∠A₁BC₁. Значит, четырёхугольник ABCK — вписанный, K лежит на описанной около ABC окружности, что и требовалось доказать.

3) Продлим BO до пересечения с окружностью в точке D — получим диаметр BD. Тогда ∠BAD — прямой, так как опирается на диаметр. В треугольниках ΔBAD и ΔBB₁C: ∠BAD = ∠BB₁C = 90°, ∠ADB = ∠ACB как опирающиеся на одну дугу. Значит, углы ∠ABD и ∠CB₁B также равны. Но это те же углы, что и ∠ABO и ∠CBH соответственно. Значит, ∠ABO = ∠CBH, что и требовалось доказать.

4) Пусть HM = MK. Тогда K лежит на описанной окружности по п. 2. Также по п. 2 AKCH — параллелограмм ⇒ AH║KC, но AH⊥BC ⇒ KC⊥BC. ∠KCB — прямой, значит, KB — диаметр ⇒ KO = OB.

Рассмотрим ΔKOM и ΔKBH: ∠K — общий, KO : KB = 1 : 2, KM : KH = 1 : 2 по построению ⇒ треугольники подобны ⇒ OM : BH = 1 : 2 ⇒ BH = 2OM, что и требовалось доказать.


Дан остроугольный треугольник ABC, в котором проведены высоты AA₁, BB₁ и СС₁, которые пересекаются в
Дан остроугольный треугольник ABC, в котором проведены высоты AA₁, BB₁ и СС₁, которые пересекаются в
Дан остроугольный треугольник ABC, в котором проведены высоты AA₁, BB₁ и СС₁, которые пересекаются в
Дан остроугольный треугольник ABC, в котором проведены высоты AA₁, BB₁ и СС₁, которые пересекаются в
0,0(0 оценок)
Популярные вопросы: Геометрия
Полный доступ
Позволит учиться лучше и быстрее. Неограниченный доступ к базе и ответам от экспертов и ai-bota Оформи подписку
logo
Начни делиться знаниями
Вход Регистрация
Что ты хочешь узнать?
Спроси ai-бота