5.11.Изобразите куб аналогично данному на рисунке 5.9. Вершинами какого многогранника являются вершины А, С, В, D, этого куба? Изобразите этот многогранник. Найдите его ребро, если ребра исходного куба равны нужно
Пусть основание АВ, вершина, из которой проведены медиана и высота - С, середину АВ обозначим М, основание высоты К (СК - высота к АВ). Опишем вокруг АВС окружность и продлим СМ и СК до пересечения с ней. Пусть это точки, соответственно Е для СМ и Р для СК.
Мы знаем, что дуги АЕ и ВР равны.
Поэтому ЕР II AB
=> ЕР перпендикулярно СР,
=> EC - диаметр,
и => М - центр окружности. В самом деле, АМ = МВ, но АВ не перпендикулярно ЕС, а это возможно, только если М - цетр окружности (можно указать на равенство СК и КР, поэтому СМ = МС, и опять - М - центр)
1) у нас равнобедренный треугольник следовательно сторону можно взять за х,тогда периметр равен Р=х+х+с(основание)=2х+с. рассмотрим прямоугольный треугольник,образованный при опущенного перпендикуляра,где наша сторона х является гипотенузой,а высота и половина основание - катетами(помним,что высота в равнобедренном треугольнике является медианой и биссектрисой). по теореме Пифогора х^2=h^2+(c/2)^2 получаем систему
получили,что стороны равны 26,26,20 2)Нам дан прямоугольный треугольник,пусть один катет равен х,тогда второй катет равен 17-х. По теореме Пифагора найдем х 13^2=x^2+(17-x)^2 169=x^2+289-34x+x^2 x^2-17x+60=0 получили корни 5 и 12 - это и есть наши катеты ответ:5;12
3)Здесь нужно вспомнить,что в прямоугольном треугольнике середина гипотенузы является центром описанной окружность.Медиана делит сторону пополам,а у нас она проведена к гипотенузе,значит медиана=половине гипотенузы---->гипотенуза равна 10*2=20. возьмем за х один из катетов прямоугольного треугольника,тогда второй катет равен х+4.по теореме Пифагора найдем 20^2=x^2+(x+4)^2 2x^2+8x-384=0 получили корни -16 и 12,т.к сторона не может быть отрицательной,то нам подходит только один корень. ответ: 12; 12+4=16
Пусть основание АВ, вершина, из которой проведены медиана и высота - С, середину АВ обозначим М, основание высоты К (СК - высота к АВ). Опишем вокруг АВС окружность и продлим СМ и СК до пересечения с ней. Пусть это точки, соответственно Е для СМ и Р для СК.
Мы знаем, что дуги АЕ и ВР равны.
Поэтому ЕР II AB
=> ЕР перпендикулярно СР,
=> EC - диаметр,
и => М - центр окружности. В самом деле, АМ = МВ, но АВ не перпендикулярно ЕС, а это возможно, только если М - цетр окружности (можно указать на равенство СК и КР, поэтому СМ = МС, и опять - М - центр)
Итак ,мы имеем ПРЯМОУГОЛЬНЫЙ треугольник АВС, угол АСВ = 90 градусов.
Из равенства дуг СВ и ВР (мы уже ДОКАЗАЛИ, что АВ - диаметр, пепендикулярный СР) следует, что угол СЕР в 2 раза больше ВСК,
то есть если считать угол ВСК = 5*х, то
угол ЕСР = 8*х, угол СЕР = 10*х.
Но угол ЕСР + угол СЕР = 90 градусов, откуда х = 5 градусов, угол САВ = угол КСВ = 5*х = 25 градусов, угол КВС = 90 - 25 = 65 градусов.
ответ углы треугольника 25, 65 и 90 градусов.
рассмотрим прямоугольный треугольник,образованный при опущенного перпендикуляра,где наша сторона х является гипотенузой,а высота и половина основание - катетами(помним,что высота в равнобедренном треугольнике является медианой и биссектрисой). по теореме Пифогора х^2=h^2+(c/2)^2
получаем систему
получили,что стороны равны 26,26,20
2)Нам дан прямоугольный треугольник,пусть один катет равен х,тогда второй катет равен 17-х. По теореме Пифагора найдем х
13^2=x^2+(17-x)^2
169=x^2+289-34x+x^2
x^2-17x+60=0
получили корни 5 и 12 - это и есть наши катеты
ответ:5;12
3)Здесь нужно вспомнить,что в прямоугольном треугольнике середина гипотенузы является центром описанной окружность.Медиана делит сторону пополам,а у нас она проведена к гипотенузе,значит медиана=половине гипотенузы---->гипотенуза равна 10*2=20.
возьмем за х один из катетов прямоугольного треугольника,тогда второй катет равен х+4.по теореме Пифагора найдем
20^2=x^2+(x+4)^2
2x^2+8x-384=0
получили корни -16 и 12,т.к сторона не может быть отрицательной,то нам подходит только один корень.
ответ: 12; 12+4=16