АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3, S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC
S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)
S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,
S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10,
S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20,
S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,
S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1
Объяснение:
Если в осевом сечении цилиндра лежит квадрат, значит, радиус основания и высота у него равны.
Зная, что гипотенуза квадрата равна 8 см, обозначаем катеты прямоугольного треугольника через Х:
По теореме Пифагора находи значение Х:
2Х2= 64;
Х2 = 32;
Х = √32.
Площадь боковой поверхности цилиндра равна произведению площади основания на высоту:
S = П * D * Н.
П = 3,14;
D и H равны √32.
Находим площадь боковой поверхности цилиндра:
S = 3,14 * √32 * √32 = 3,14 * 32 = 100,48 см2.
ответ: Площадь боковой поверхности цилиндра равна 100,48 см2
АС1/С1В=1/1, ВА1/А1С=3/7, АВ1/В1С=1/3, S A1B1C1=S ABC - S AC1B1 - S C1BA1 - S A1CB1, обе части уравнения делим на S ABC
S A1B1C1 / S ABC = 1 - (S AC1B1/S ABC) - (S C1BA1/ S ABC) - (S A1CB1/S ABC)
S ABC=1/2*AB*AC*sinA, S AB1C1=1/2*AC1*AB1*sinA, AB=AC1+C1B=1+1=2, AC=AB1+B1C=1+3=4, S AB1C1/S ABC=(AC1*AB1)/(AB*AC)=(1*1)/(2*4)=1/8,
S ABC=1/2*AB*BC*sinB, S C1BA1=1/2*C1B*BA1*sinB, BC=BA1+A1C=3+7=10,
S C1BA1/S ABC=(C1B*BA1)/(AB*BC)=(1*3)/(2*10)=3/20,
S ABC=1/2*AC*BC*sinC, S A1CB1=1/2*A1C*B1C*sinC, S A1CB/S ABC=(A1C*B1C) / (AC*BC)=(7*3)/(4*10)=21/40,
S A1B1C1/S ABC=1-1/8-3/20-21/40=8/40=1/5, или S ABC/S A1B1C1=5/1
Объяснение:
Если в осевом сечении цилиндра лежит квадрат, значит, радиус основания и высота у него равны.
Зная, что гипотенуза квадрата равна 8 см, обозначаем катеты прямоугольного треугольника через Х:
По теореме Пифагора находи значение Х:
2Х2= 64;
Х2 = 32;
Х = √32.
Площадь боковой поверхности цилиндра равна произведению площади основания на высоту:
S = П * D * Н.
П = 3,14;
D и H равны √32.
Находим площадь боковой поверхности цилиндра:
S = 3,14 * √32 * √32 = 3,14 * 32 = 100,48 см2.
ответ: Площадь боковой поверхности цилиндра равна 100,48 см2