Свойство параллельного проецирования: Проекции двух скрещивающихся (не пересекающихся) прямых линий в зависимости от направления проецирования могут пересекаться либо быть параллельными.
Если плоскости α и β пересекаются, прямые a и b лежат в двух разных плоскостях, перпендикулярных линии пересечения плоскостей α и β, то проекции таких прямых на плоскости будут параллельны, однако сами прямые могут быть скрещивающимися. То есть по параллельным проекциям прямых на пересекающиеся плоскости НЕЛЬЗЯ утверждать, что сами прямые параллельны.
На рисунке пример, когда плоскости α и β не ортогональны и прямые параллельны плоскостям : а║α, b║β.
Параллельный перенос задается формулами
\begin{gathered} < var > x'=x+a;\\ y'=y+b;\\ z'=z+c < /var > \end{gathered}
<var>x
′
=x+a;
y
′
=y+b;
z
′
=z+c</var>
Так как при параллельном переносе точка А(-2;3;5) переходит в точку А1(1;-1;2), то
\begin{gathered} < var > 1=-2+a;\\ -1=3+b;\\ 2=5+c < /var > \end{gathered}
<var>1=−2+a;
−1=3+b;
2=5+c</var>
\begin{gathered} < var > a=1+2;\\ b=-1-3;\\ c=2-5 < /var > \end{gathered}
<var>a=1+2;
b=−1−3;
c=2−5</var>
\begin{gathered} < var > a=3;\\ b=-4;\\ c=-3 < /var > \end{gathered}
<var>a=3;
b=−4;
c=−3</var>
Данный параллельный перенос задается формулами
\begin{gathered} < var > x'=x+3;\\ y'=y-4;\\ z'=z-3 < /var > \end{gathered}
<var>x
′
=x+3;
y
′
=y−4;
z
′
=z−3</var>
Поэтому точка В(-4;-3;1) перейдет в точку c координатами
\begin{gathered} < var > x'=-4+3;\\ y'=-3-4;\\ z'=1-3 < /var > \end{gathered}
<var>x
′
=−4+3;
y
′
=−3−4;
z
′
=1−3</var>
\begin{gathered} < var > x'=-1;\\ y'=-7;\\ z'=-2 < /var > \end{gathered}
<var>x
′
=−1;
y
′
=−7;
z
′
=−2</var>
т.е. В1(-1;-7;-2)
Свойство параллельного проецирования: Проекции двух скрещивающихся (не пересекающихся) прямых линий в зависимости от направления проецирования могут пересекаться либо быть параллельными.
Если плоскости α и β пересекаются, прямые a и b лежат в двух разных плоскостях, перпендикулярных линии пересечения плоскостей α и β, то проекции таких прямых на плоскости будут параллельны, однако сами прямые могут быть скрещивающимися. То есть по параллельным проекциям прямых на пересекающиеся плоскости НЕЛЬЗЯ утверждать, что сами прямые параллельны.
На рисунке пример, когда плоскости α и β не ортогональны и прямые параллельны плоскостям : а║α, b║β.