1) Обьем пирамиды равен: V=Sосн.*h/3; Sосн. - площадь основания; основание - это правильный шестиугольник, его площадь равна: Sосн.=3√3*a^2/2; Sосн.=3√3*(4√3)^2/2=72√3 см^2; V=72√3*8/3=192√3 см^3; 2) Площадь полной поверхности равна: Sпол.= Sосн.+Sбок.; площадь боковой поверхности равна: Sбок.=a*n*L/2; a сторона основания; n число сторон основания; L - апофема; высота боковой грани, проведённая из ее вершины; пусть В - вершина пирамиды; А - основание апофемы, точка пересечения с серединой стороны а; О - центр шестиугольника; в треугольнике АОВ угол О прямой, ВА=L; OB=h; ОА - отрезок, соединяющий центр О с серединой стороны а; проведем отрезок ОК из центра О до вершины стороны, на которую проведена апофема ВА; треугольник ОАК прямоугольный, угол А прямой: АК=а/2=2√3 см; ОК=а; (ОК^2)=(ОА)^2+(АК)^2; (ОА)^2=(4√3)^2-(2√3)^2; ОА=√36=6 см; из треугольника АОВ: (ВА)^2=(ОВ)^2+(ОА)^2; L^2=8^2+6^2=100; L=10 см; Sбок.=4√3*6*10/2=120√3 см^2; Sпол.=Sосн.+ Sбок.; Sпол.=72√3+120√3=192√3 см^2;
1) Точка пересечения медиан в остроугольном, прямоугольном и тупоугольном треугольниках находится внутри треугольника.
2) Точка пересечения высот в остроугольном треугольнике находится внутри треугольника.
Точка пересечения высот в прямоугольном треугольнике находится в вершине прямого угла.
Точка пересечения высот в тупоугольном треугольнике находится вне треугольника.
3) И в остроугольном, и в прямоугольном, и в тупоугольном треугольниках точка пересечения биссектрис лежит внутри треугольника. (Следствие того, что центром вписанной окружности в треугольник является точка пересечения биссектрис).
2) Точка пересечения высот в остроугольном треугольнике находится внутри треугольника.
Точка пересечения высот в прямоугольном треугольнике находится в вершине прямого угла.
Точка пересечения высот в тупоугольном треугольнике находится вне треугольника.
3) И в остроугольном, и в прямоугольном, и в тупоугольном треугольниках точка пересечения биссектрис лежит внутри треугольника. (Следствие того, что центром вписанной окружности в треугольник является точка пересечения биссектрис).