так как сечением у нас является прямоугольный треугольник ABC . где BC-гипотенуза, а AC-катет (радиус) Из этого по теореме Пифагора найдем AC . так как треугольник АВСпрямоугольный,то AC=AB(представим как х) ПОлучится уравнение: х2+х2=144. 2х(в квадрате)=144 .х=корень из 72 то есть 3 корней из 8 . AC=3 корней из 8(радиус)1) Sосн=пr^2= п*(3 корней из 8)^2(в квадрате)=72п.2)Sбок=пrl(где l это гипотенуза BC) = п*3 корней из 8*12=36п корней из 83 Sпол = Sбок+Sосн=36п корней из 8 + 72п осевое сечение конуса всегда равнобедренный треугольник, в котором равные стороны треугольника являются образующими. Катет не может быть радиусом, здесь радиус половина гипотенузы. См. рис. во вложении.ВА^2+AC^2=12^2BA=AC2BA^2=144BA=v72 - это длина образующейРадиус половина гипотенузы то есть 6Высоту АО найдем тоже из прямоуг. треугольника АОСАО=v(72-36)=6Теперь можно найти полную поверхность конусаS=?(R^2+Rl)=?(36+6v72)==?(36+36v2)=36?(1+v2) Sбок=?rlSосн=?r?гипотенуза это диаметр основанияпусть катет =х, тогда по т Пифагорах?+х?=12?2х?=144х?=72х=6v2 образующаярадиус =пполовине диаметра=12 :2=6Sбок=?*6*6v2=36?v2Sосн=?6?=36?Sпол=36?v2+36?=36?(v2+1)
S полная = S основ + Sбоков S основ. = а² =4² = 16 см² S боков. =S₁+S₂+S₃+S₄ каждая гарь - треугольники грани 1 и 4 имеют общую высоту = 3 см S₁=S₄=1/2ab =1/2×3×4 = 6 см² - каждая. Боковая грань 1 и 4 перпендикулярны к основанию (так как ребро - -высота пирамиды перпендикуляр по условию) тогда и грани 2 и 3 тоже прямоугольные : один катет которых -это сторона основания = 4, а второй катет -это будет гипотенузой у граней 1 и 4. Найдем гипотенузу у 1-ой и 4-ой граней: с² = а²+ b² = 3²+4² =9+16=25=5² с=5 см S₂=S₃ = 1/2×4×5= 10cм² - каждая S полная = 16+6+6+10+10 = 48 см²
х2+х2=144. 2х(в квадрате)=144 .х=корень из 72 то есть 3 корней из 8 . AC=3 корней из 8(радиус)1) Sосн=пr^2= п*(3 корней из 8)^2(в квадрате)=72п.2)Sбок=пrl(где l это гипотенуза BC) = п*3 корней из 8*12=36п корней из 83 Sпол = Sбок+Sосн=36п корней из 8 + 72п осевое сечение конуса всегда равнобедренный треугольник, в котором равные стороны треугольника являются образующими. Катет не может быть радиусом, здесь радиус половина гипотенузы. См. рис. во вложении.ВА^2+AC^2=12^2BA=AC2BA^2=144BA=v72 - это длина образующейРадиус половина гипотенузы то есть 6Высоту АО найдем тоже из прямоуг. треугольника АОСАО=v(72-36)=6Теперь можно найти полную поверхность конусаS=?(R^2+Rl)=?(36+6v72)==?(36+36v2)=36?(1+v2) Sбок=?rlSосн=?r?гипотенуза это диаметр основанияпусть катет =х, тогда по т Пифагорах?+х?=12?2х?=144х?=72х=6v2 образующаярадиус =пполовине диаметра=12 :2=6Sбок=?*6*6v2=36?v2Sосн=?6?=36?Sпол=36?v2+36?=36?(v2+1)
S основ. = а² =4² = 16 см²
S боков. =S₁+S₂+S₃+S₄
каждая гарь - треугольники
грани 1 и 4 имеют общую высоту = 3 см
S₁=S₄=1/2ab =1/2×3×4 = 6 см² - каждая.
Боковая грань 1 и 4 перпендикулярны к основанию (так как ребро - -высота пирамиды перпендикуляр по условию) тогда и грани 2 и 3 тоже прямоугольные : один катет которых -это сторона основания = 4, а второй катет -это будет гипотенузой у граней 1 и 4.
Найдем гипотенузу у 1-ой и 4-ой граней:
с² = а²+ b² = 3²+4² =9+16=25=5²
с=5 см
S₂=S₃ = 1/2×4×5= 10cм² - каждая
S полная = 16+6+6+10+10 = 48 см²